

SOLID J/Ψ PHYSICS AND GLUONIC FORM FACTORS

SHIVANGI PRASAD sprasad@anl.gov

On behalf of SoLID collaboration

This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

01/27/2023 Winter Hall A collaboration meeting

OUTLINE

- Introduction J/ Ψ production at threshold
- Current status on J/ ψ production measurement at JLab
 - GlueX (Hall D)
 - J/ψ 007 (Hall C)
- SoLID J/ ψ and Gluonic Form factors
 - Understanding of threshold region & GFFs
- Summary

UNDERSTANDING THE ORIGIN OF PROTON MASS AND ITS DISTRIBUTION

- Proton's macroscopic properties charge, spin, mass arise from a very complex dynamics between the quarks and gluons (QCD)
- Studying it's charge radius and spin from electron scattering experiments have been an active area of research
 - Quarks carry electromagnetic charge
- Little is known about its mass density which is dominated by energy carried by gluons
 - Gluons do not carry electric charge and difficult to access via electron scattering experiments.

https://www.anl.gov/ph y/3d-structure-ofprotons-and-neutrons

NEAR THRESHOLD J/Ψ PRODUCTION Why is it interesting?

- t-channel differential cross section of quarkonium production at threshold → promising channel to access the gluons
 - GFFs are matrix elements of the proton's energymomentum tensor (EMT)
 - Gluon Form Factors (slope and magnitude)→ encode mechanical properties e.g., radii, pressure, shear

$$\left\langle N' \left| T_{q,g}^{\mu,\nu} \right| N \right\rangle = \bar{u}(N') \left(A_{g,q}(t) \gamma^{(\mu} p^{\nu)} + B_{q,g} \right)^{i P^{(\mu} \sigma^{\nu)} \rho \Delta_{\rho}}_{2M} + C_{g,q}(t) \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^{2}}{M} + \bar{C}_{g,q}(t) M g^{\mu\nu} \right) u(N)$$

 $A_{g,q}(t)$: Related to quark and gluon momentum fraction; $A_{g,q}(0) = \langle x_{g,q} \rangle$

 $B_{g,q}(t)$: Total angular momentum $J_{g,q}(t) = \frac{1}{2}(A_{g,q}(t) + B_{g,q}(t))$

 $C_{g,t}(t)$: Pressure and Shear distribution $D_{g,q}(t) = 4C_{g,q}(t)$

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

NEAR THRESHOLD J/W PRODUCTION

Existing measurements

- Cross section well constrained at higher energies.
- Experimental data lacking near threshold region.

J/Ψ PHOTOPRODUCTION NEAR THRESHOLD AT HALL D

- First to measure J/Ψ at JLab.
- Reported 1D differential cross section $\frac{d\sigma}{dt}$ in E_{γ} bin (10 GeV - 11.8 GeV) upto $t = 1.4 \ GeV^2$

2-D CROSS SECTIONS- J/Ψ 007

Model dependent extractions of GFFs and radii

 k^2 (GeV²)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

 $A_g(k^2)$

 $D_{9}(k^{2})$

12.0

Mamo, K. A. & Zahed, I. Phys. Rev. D 103. 094010 Guo, Y., Ji, X. & Liu, Y. Phys. Rev. D 103. 096010 Pefkou, D. A., Hackett, D. C. & Shanahan, P. E. Phys. Rev. D 105, 054509

arxiv: 2207.05212 Accepted for publication in Nature 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

SOLID EXPERIMENT (E12-12-006)

- Large acceptance spectrometer designed for higher luminosity
 - Capable of handling high signal and background rates
- Detector configuration similar to SoLID-SIDIS (except for unpolarized liquid hydrogen)
- 50+10 days of 3µA beam on a 15 cm long target at 10³⁹ cm²s⁻¹
- Open 2 particle trigger

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

- Photoproduction ((e)p \rightarrow e+e-) : 3-fold coincidence
- Electroproduction $(e(p) \rightarrow e+e-)$: 3-fold coincidence
- Exclusive (ep \rightarrow e+e-) : 4-fold coincidence
- Inclusive (e+e-) : 2-fold coincidence

J/Ψ PHOTOPRODUCTION AT SOLID

Very high statistics and high-t reach

- Contribution from quasi-real and bremsstrahlung
- Measurement requires coincidence of electron- positron pair from decay of J/Ψ and Ξ^{E} the recoil proton
- High-t reach for higher W.

J/Ψ ELECTROPRODUCTION AT SOLID

Much closer reach in threshold region

- Production via virtual photon
- Measurement requires coincidence of electron- positron pair from decay of J/Ψ and the scattered electron
- Complementary to photoproduction
- Superior reach in near-threshold region
- Lever arm in Q²

1.5

0.5

32 (GeV²)

COMPARISON OF EXISTING J/Ψ PRODUCTION NEAR THRESHOLD DATA WITH SOLID

	GlueX Hall D	J/Ψ 007 Hall C	SoLID Hall A
J/Ψ counts (photoproduction)	469 published ~10k phase I+II	2k electron channel 2k muon channel	804k
J/Ψ counts (electroproduction)	N/A	N/A	21k
Features	Good reach near threshold No high-t reach	Reach high-t Low statistics	Reach high-t High statistics
Timeline	Finished/ongoing	Finished	Future

SENSITIVITY FOR SOLID EXPERIMENT

PROJECTED IMPACT OF SOLID J/Ψ MEASUREMENT

 M_a/M using Ji's approach

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

JLAB ENERGY UPGRADE: POSSIBLE Ψ' MEASUREMENT

W.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SUMMARY

- J/Ψ production measurement at threshold provides unique opportunity to access gluons
 - Gluonic form factors
 - Mass and scalar radii
 - Trace anomaly
- JLab 12 GeV program has been able to successfully have a first look at results from nearthreshold J/Ψ production (GlueX and J/Ψ-007 experiments)
 - While model dependent, preliminary results on radii extracted from the J/ Ψ 007 experiment data show that mass radii is smaller than charge radius –dense core??
- Upcoming SoLID J/Ψ program crucial for understanding important physics related to mechanical properties of matter.
 - High luminosity and large acceptance well suited for precision measurement at high t for photoproduction as well as better reach in the threshold region for electroproduction

THANK YOU

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

QUESTIONS?

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SOLID DETECTOR

Pre-R&D items: LGC, HGC, GEM's, DAQ/Electronics, Magnet

- LASPD: Large-angle Scintillator Pad detector; TOF resolution 150 ps; photon rejection 10:1
- LAEC: Large Angle E Cal; primary electron trigger and detection; also MIP trigger for pions
- LGC: electron identification, CO2, part of electron trigger system
- HGC: identify charged pion, suppress charged kaons, C4F8
- FASPD: Forward-angle Scintillator pad detector; photon rejection 5:1
- MRPC: Multi-gap resistive Plate Chamber; used as TOF system
- FAEC: Forward-angle E Cal; primary electron trigger and detection

J/Ψ PHOTOPRODUCTION KINEMATICS

- Phase space for J/ Ψ production is limited by t_{min} and t_{max}
 - $t_{min} \rightarrow J/\Psi$ in the forward/ along the direction of photon
 - $t_{max} \rightarrow J/\Psi$ in the backward/ along the direction of proton

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

MODEL DEPENDENT EXTRACTION OF GLUONIC GRAVITATIONAL FORM FACTORS

- Used two different approaches to perform extraction
 - Holographic approach : (Mamo, K. A. & Zahed, I. Phys. Rev. D 103, 094010)
 - GPD approach : (Guo, Y., Ji, X. & Liu, Y. Phys. Rev. D 103, 096010)
- Two form factors (tripole form) considered. Contribution from $B_g(t)$ is assumed to be negligible

$$A_{g}(t) = \frac{A_{g}(0)}{\left(1 - \frac{t}{m_{A}^{2}}\right)^{3}} \qquad C_{g}(t) = \frac{C_{g}(0)}{\left(1 - \frac{t}{m_{C}^{2}}\right)^{3}}$$

- Fixed $A_g(0)$ to $\langle x_g \rangle \rightarrow$ from CT18 global fit.
 - $-m_A$, $C_g(0)$ and m_C determined from fits
- Results undergoing peer review
 - Preprint → arxiv: 2207.05212

