

SoLID 3D Program

Zhihong Ye

Department of Physics, Tsinghua University, Beijing China

On behalf of SoLID Collaboration

Hall-A Winter Meeting, 01/26-01/27/2023

Nucleon's 3D Structure

Transverse Momentum Distributions

> Semi-Inclusive Deep Inelastic Scattering (SIDIS) with polarized targets:

Double-Spin Asymmetry (DSA)

$$A_{LT}^{Worm-Gear} \propto \left\langle \cos(\phi_h - \phi_s) \right\rangle_{LT} \propto g_{1T} \otimes D_1$$

Worm-Gear

Transverse Momentum Distributions

Х

0.8

SoLID-SIDIS(&J/Psi) Configuration

SoLID-SIDIS Programs

> Three initial SIDIS proposals:

E12-10-006: Single Spin Asymmetries on Transversely Polarized 3He @ 90 days

J.P. Chen, H. Gao (contact), J.C.Peng, X.Qian, Rating A

E12-11-007: Single and Double Spin Asymmetries on Longitudinally Polarized 3He @ 35 days

J.P. Chen (contact), J. Huang, C. Peng, W.B. Yan, Rating A

□ E12-11-108:Single Spin Asymmetrieson Transversely Polarized Proton @ 120 days

J.P. Chen, H. Gao (contact), V. Khachatryan, X.M. Li, Z.-E. Meziani, Rating A

Run-Group (same beam time / configuration):

□ SIDIS Dihadron with Transversely Polarized 3He (E12-10-006A)

J.-P. Chen, A. Courtoy, H. Gao, A. W. Thomas, Z. Xiao, J. Zhang

□ SIDIS in Kaon Production with Transversely Polarized 3He T. Liu (E12-10-006D)

S. Park, Z. Ye, Y. Wang, Z.W. Zhao, Approved as run group

□ Ay with Transversely Polarized 3He (E12-10-006A)

T. Averett, A. Camsonne, N. Liyanage, Approved as run group

□ g2 n and d2 n with Transversely and Longitudinally Polarized 3He (E12-10-006E)

C. Peng, Y. Tian, Approved as run group

□ Deep exclusive π – Production with Transversely Polarized 3He (E12-10-006B)

Z. Ahmed, G. Huber, Z. Ye, Approved as run group

Phase-space and Statistics of SSA:

 \checkmark Much wider phase-space to cover the valance quark region

✓ High statistics for 4D binning in (x, p_T, Q^2, z)

Overall >1000 bins for neutron and >600 bins for proton

D'Alesio et al., Phys. Lett. B 803 (2020)135347 Z. Ye, N. Sato et al, Phys. Lett. B 767, 91 (2017), based on Z. Kang et. al.

Transversity

World vs. SoLID (³He

(systematic uncertainty included)

0.4

0.2

Sivers

World vs. SoLID (³He)

(systematic uncertainty included)

0.04

0.02

> Transversity & Tensor-Charge from SSA:

□ Transversity

$h_{1T} = \underbrace{\uparrow}_{\bullet} - \underbrace{\uparrow}_{\bullet}$	
$\mathbf{S}_T \cdot \mathbf{s}_q$	

$$\Box \text{ Access Tensor charge: } g_T^q = \int_0^1 \left[h_1^q(x) - h_1^{\overline{q}}(x) \right] dx$$

□ Tensor charge is also connected to neutron and proton EDMs:

 $d_n = g_T^d d_u + g_T^u d_d + g_T^s d_s$

 $\checkmark\,$ A fundamental QCD quantity dominated by valence quarks

- $\checkmark\,$ Precisely calculated on the lattice
- $\checkmark\,$ SoLID allows for high-precision test of LQCD predictions
- $\checkmark\,$ A unique opportunity for SM tests and new physics

J. Cammarota et al, PRD 102, 054002 (2020) (JAM20+) L. Gamberg et al., arXiv:2205.00999 (JAM22)

Sivers & Prezelocity from SSA:

□ Sivers distribution

naively time-reversal odd (sign-change vs DY)

 $f_{1T}^{\perp q}(x,k_{\perp})\Big|_{\text{SIDIS}} = -f_{1T}^{\perp q}(x,k_{\perp})\Big|_{\text{DY}}$

• SoLID projection with transversely polarized n/p

Parametrization by M. Anselmino et al., EPJ A 39, 89 (2009)

Lefky and Prokudin PRD 91, 034010 (2015)

Relation to OAM (canonical)

$$L_{z}^{q} = -\int \mathrm{d}x \mathrm{d}^{2}\mathbf{k}_{\perp} \frac{\mathbf{k}_{\perp}^{2}}{2M^{2}} h_{1T}^{\perp q}(x,k_{\perp}) = -\int \mathrm{d}x h_{1T}^{\perp(1)q}(x)$$

Dominated by interference between wave function components that differ by one unit of quark OAM
 A genuine sign of intrinsic transverse motion

➤ Kaon-SIDIS:

Look for K[±] production in SIDIS using both the transversely polarized 3He and NH3 Targets
 Extract K[±] Collins, Sivers and other TMD asymmetries
 Flavor decomposition of u, d and sea quarks' TMDs
 Kaon-Identification: HGC + 30ps MRPC-TOF

□ Enhanced configuration

- ✓ MRPC modules contributed by Chinese resources (Tsinghua, USTC, etc.)
- ✓ High-time resolution Readout electronics possibly contributed by other US funding resources (UIC, etc.)

Nucleon's 3D Structure

□ 8 Leading-Twist GPDs:

Chiral Even $H^{q/g}, E^{q/g}, \widetilde{H}^{q/g}, \widetilde{E}^{q/g}$

Chiral Odd	$H^{q/g}_{\tau}$.	$E_{\tau}^{q/g}$.	$\widetilde{H}_{\tau}^{q/g}$	$\widetilde{E}_{\tau}^{q/g}$
onn ar o'aa	•• <i>T</i> ,	\boldsymbol{L}_T ,	• • T	, - <i>T</i>

			Quark Polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)	
_	υ	Н		$2\widetilde{H}_T + E_T$	
larizatior	L		\widetilde{H}	$\widetilde{E}_{\scriptscriptstyle T}$	
Nucleon Po	т	E	\widetilde{E}	$H_{_T}, \widetilde{H}_{_T}$	

□ Access parton distributions in 3D

X. Ji, PRL 78, 610 (1997)
M. Diehl, Physics Reports 388 (2003) 41–277,
Belitsky, Radyushkin, Physics Reports 418 (2005) 1–387

□ Connect to FF & PDFs: e.g.

$\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$ $\int_{-1}^{1} dx E^{q}(x,\xi,t) = F_{2}^{q}(t)$	Dirac&Pauli Form Factors
$\int_{-1}^{1} dx \widetilde{H}^{q}(x,\xi,t) = G_{A}^{q}(t)$ $\int_{-1}^{1} dx \widetilde{E}^{q}(x,\xi,t) = G_{P}^{q}(t)$	Axial&Pseudoscaler Form Factors
$H^{q}(x,0,0) = q(x), x > 0$ $\widetilde{H}^{q}(x,0,0) = \Delta q(x), x > 0$	PDFs

□ How to access Angular Momenta?

✓ Ji's Sum Rule (X. Ji, PRL 78, 610 (1997)

$$J_{q/g} = \lim_{t,\xi\to 0} \frac{1}{2} \int x dx \left[\frac{H^{q/g}}{x}(x,\xi,t) + \frac{E^{q/g}}{x}(x,\xi,t) \right]$$

Generalized Parton Distributions (GPD)

Deep Virtual Compton Scattering (DVCS):

□ Golden channel to study GPD

Asymmetry: $A = \frac{I}{|\tau_{DVCS}|^2 + I + |\tau_{BH}|^2} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$

✓ Decouple GPDs by angular modulations:

$$d\sigma_{UU}^{I} = \frac{-K_{I}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{3} c_{n,\text{unp}}^{I} \cos(n\phi), \qquad d\sigma_{LU}^{I} = \frac{-K_{I}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=1}^{2} s_{n,\text{unp}}^{I} \sin(n\phi),$$
$$d\sigma_{UU}^{\text{DVCS}} = \frac{1}{Q^{2}} \sum_{n=0}^{2} c_{n,\text{unp}}^{\text{DVCS}} \cos(n\phi), \qquad d\sigma_{LU}^{\text{DVCS}} = \frac{1}{Q^{2}} s_{1,\text{unp}}^{\text{DVCS}} \sin\phi,$$

Polarization	Asymmetries	CFFs
Longitudinal Beam	A_{LU}	$Im\{\mathcal{H}_p, \widetilde{\mathcal{H}}_p, \mathcal{E}_p\}$ $Im\{\mathcal{H}_n, \widetilde{\mathcal{H}}_p, \mathcal{E}_n\}$
Longitudinal Target	A_{UL}	$Im\{{\cal H}_p,{\widetilde {\cal H}}_p\}\ Im\{{\cal H}_n,{\cal E}_n,{\widetilde {\cal E}}_n\}$
Long. Beam + Long. Target	A_{LL}	$\mathcal{R}e\{\mathcal{H}_{p},\widetilde{\mathcal{H}}_{p}\}\ \mathcal{R}e\{\mathcal{H}_{n},\mathcal{E}_{n},\widetilde{\mathcal{E}}_{n}\}$
Transverse Target	A_{UT}	$Im\{{\cal H}_p,{\cal E}_p\}\ Im\{{\cal H}_n,{\cal E}_n\}$
Long. Beam +Trans.Targt	A_{LT}	$\mathcal{R}e\{\mathcal{H}_p, \mathcal{I}_p\}\ \mathcal{R}e\{\mathcal{H}_n, \mathcal{I}_n\}$

Current Status:

□ Exploration stage (CLAS, Hall-A, COMPASS, HERMES, ZEUS, H1)

Guidal, Moutarde Vanderhaeghen, Rep. Prog. Phys. 76 (2013) d'Hose, et. al., Eur. Phys. J. A (2016) 52: 151 X. Ji, National Science Review, 213-223 (2017)

□ More data needed!

Global Fits

> Jlab12GeV DVCS Experiments:

□ DVCS not directly sensitive to flavor → proton & neutron needed for u & d
 □ Need multiple observables to decouple 8 CFFs, → XS, BSA, TSA, DSA

 \square 3D \rightarrow wide kinematic-coverage + high rate

Approved 12GeV DVCS experiments:

- E12-16-010B (Hall-B): unpol. proton, XS
- E12-11-003 (Hall-B): unpol. Deuteron, BSA
- E12-06-119 (Hall-B): long-pol proton, BSA, TSA,
- C12-12-010 (Hall-B): *conditional approved*, trans. pol. Proton, TSA, BSA
- C12-15-004 (Hall-B): *conditional approved*, long. pol. Deuteron, TSA, BSA
- E12-06-114 (Hall-A&C): unpol. proton, XS & BSA, limited coverage
- E12-13-010 (Hall-C): unpol. proton, XS,
- E12-15-001 (Hall-C): proton, XS
- <u>LOI:</u> nDVCS w/ TDIS setup (Hall-A), tagged neutron, XS
- SoLID (SIDIS configuration) will provide:
 - ✓ DVCS asymmetries w/ polarized beam & target data
 - ✓ DVCS neutron data (Deuteron or He3)

17/27

\succ Three additional exclusive processes \rightarrow Crucial to fully extract GPDs

Rarely done!

\succ Three additional exclusive processes \rightarrow Crucial to fully extract GPDs

Exclusive Measurement based on SIDIS/JPsi Setup

SoLID-TCS: (E12-12-006A, M. Boer, P. Nadel-Turonski, J. Zhang, Z. Zhao)

□ Time-Like Compton Scattering (TCS):

✓ Different angular moments for TCS & BH Interference-terms

$$\sigma_{INT}^{TCS,unpol} \propto \boldsymbol{cos\phi} Re \widetilde{M}^{--}, \ \sigma_{INT}^{TCS,cir-pol} \propto \boldsymbol{sin\phi} Im \widetilde{M}^{--}$$
$$\tilde{M}^{--} = \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \eta}{1 + \eta} \Big[F_1 \mathcal{H}_1 - \eta (F_1 + F_2) \widetilde{\mathcal{H}}_1 - \frac{t}{4M^2} F_2 \mathcal{E}_1 \Big]$$

□ SoLID-TCS: Parallel data taking with J/Psi

- ✓ Unpolarized 1H target
- \checkmark Indirect photon-production
- ✓ Extract $cos \varphi$ and $sin \varphi$ modules

> Dedicated Setup for New GPD Experiments

- □ SoLID is optimized for charged particle detection
- Detector upgrade to unlock its full power of GPD measurements

SoLID DVCS with Polarized He3 Projection: one typical (Q2, x, t) bin out of 1000+ bins

- ✓ DDVCS with J/Psi +muon detectors → New proposal under development (LOI 12-12-005)
- ✓ DVCS with polarized He3 & SIDIS \rightarrow better ECal resolution + recoil proton detector

SoLID Detector R&D

□ 2022 Jlab Test for Ecal+GEM+Cherenkov (see Xinzhan's talk)

□ 2022 FermiLab MRPC & MCP-PMT Test (Tsinghua +UIC)

✓ Plan on 2023 test at Jlab: 4 MRPC at UIC now, high-rates MRPC to be sent to Jlab soon; Test fast electronics

□ Jlab 2023 Test of Ecal super-modules+MCP (Tsinghua & Shabndong Univ)

SoLID-SIDIS at 22GeV

Larger Phase-Space

SoLID-SIDIS at 22GeV

Pio-SIDIS

→Lumi~10³⁷cm⁻²s⁻¹, →1-day w/ SoLID

4 1.0 < Q ² < 2.0	- 1.0 < Q ² < 2.0 0.35 < z < 0.40	- 1.0 < Q ² < 2.0 - 0.40 < z < 0.45	- 1.0 < Q ² < 2.0 0.45 < z < 0.50	1.0 < Q ² < 2.0 - 0.50 < z < 0.60	- 1.0 < Q ² < 2.0 0.60 < z < 0.70
.2	** • • •			** • • •	*••
.8					3
.6			3	***	
	••••••	•••••	** •••••	*••••	····
.4 2.0 < Q ² < 3.5	- 2.0 < Q ² < 3.5	- 2.0 < Q ² < 3.5	- 2.0 < Q ² < 3.5	- 2.0 < Q ² < 3.5	- 2.0 < Q ² < 3.5
.2				ania a a I	
					and the state of t
			The second second	1	and a second
		· · · ·			
		<u>. </u>			
.4 3.5 < Q ² < 5.5	- 3.5 < Q* < 5.5 0.35 < z < 0.40	- * 3.5 < Q < 5.5		- 3.5 < C < 5.5 0.50 < z < 0.60	- 3.5 < Q* < 5.5 0.60 < z < 0.70
2 - 					
					· ••• • • •
Ĩ <u>E</u> ■■■■■■ ■ ■ ■ ■	· · · · · · · · ·	E *** * * * * *	E	E	
.4 5.5 < Q' < 8.5	- 5.5 < Q* < 8.5	- 5.5 < Q* < 8.5	5.5 < Q^2 < 8.5	- 5.5 < Q ² < 8.5	- 5.5 < Q° < 8.5
2		- ••••••			
			· · · · · · · · · · · · · · · · · · ·	· ••• •• •	
Ĩ 				E == = = <u>=</u> = = _=	
4 8.5 < Q ² < 12.0 0.30 < z < 0.35	8.5 < Q ² < 12.0 0.35 < z < 0.40	- 8.5 < Q ² < 12.0 0.40 < z < 0.45	8.5 < Q ² < 12.0 0.45 < z < 0.50	* 8.5 < Q ² < 12.0 0.50 < z < 0.60	8.5 < Q ² < 12.0 0.60 < z < 0.70
.2		F	E	F •••••	F ••••
1 · · · · · · · · · · · · · · · · · · ·	F	F	F	F	I
.8					
			E		E
		E	E	E	E
		<u> </u>		<u></u>	
4 12.0 < Q ² < 20.0	- 12.0 < Q < 20.0 0.35 < z < 0.40	- 12.0 < Q* < 20.0 0.40 < z < 0.45	12.0 < C < 20.0 0.45 < z < 0.50	- 12.0 < C < 20.0 0.50 < z < 0.60	- 12.0 < C < 20.0 0.60 < z < 0.70
.2		F • • •		- • • •	F
1t	t	F	t	t	t
.8					
	E	E	E	E 1 • • • •	E
		<u> </u>	<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·
4 20.0 < Q ² < 40.0	20.0 < Q ² < 40.0 0.35 < z < 0.40	20.0 < Q ² < 40.0 0.40 < z < 0.45	20.0 < Q ² < 40.0 0.45 < z < 0.50	20.0 < Q ² < 40.0 0.50 < z < 0.60	20.0 < Q ² < 40.0 0.60 < z < 0.70
2	F	F	F	F •	F •
i -	E •	E •	E •	E • •	E •
		k <u>•</u>	÷ •		k <u>t</u>
4 .	+ 11	F I	F 5	l l	F 22
2		. 1	. 1		. 1
01 02 03 04 05 06 07 0	8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	01 02 03 04 05 06 07 08	01 02 03 04 05 06 07 08	01 02 03 04 05 06 07 08	01 02 03 04 05 06 07 08

SoLID-SIDIS at 22GeV

Summary

□ TMD & GPD get access to 3D info of nucleons and orbital angular momentum

SoLID detector provides both high luminosity & large acceptance, with both polarized neutron and proton targets

□ SIDIS programs will greatly improve measurements of Collins, Sivers, Prezelocity &

Worm Gear; Precisely obtain tensor-charge for searching new physics

□ All SIDIS programs receive high recommendation in PAC50 (maintaining A-rating)

□ Approved GDP programs (TCS & DVMP) in run-group with SIDIS & J/Psi setup

□ Future detector updates for dedicated GPD study (DVCS & DDVCS)

Great potential at 22GeV

Backup Slides

Transverse Momentum Distributions

□ Transverse Momentum Distribution Functions (TMDs) → describe 3D motion in momentum space of all quarks & gluons in a

nucleon

D = 1D Longitudinally Momentum + 2D Transverse Momentum

 \checkmark Spin contributions from valance quarks, sea quarks and gluons

 $\checkmark\,$ Also contributed by quarks & gluons' orbital angular momenta (OAM)

Key Features of TMDs:

✓ Represent the intrinsic confined motion of quark & gluons
✓ Off-Diagonal TMDs vanish if no orbital angular momentum
✓ Most of TMDs are due to the spin-orbit correlations

8 Quark-TMDs (leading twist)

Unpolarized Density Function:

$$f_1(x) = \int d^2 \mathbf{k}_{\perp} f_1(x, k_{\perp})$$
Helicity Function:

$$g_1(x) = \int d^2 \mathbf{k}_{\perp} g_{1L}(x, k_{\perp})$$
Transversity Function:

$$h_1(x) = \int d^2 \mathbf{k}_{\perp} [h_{1T}(x, k_{\perp}) + \frac{k_{\perp}^2}{2M^2} h_{1T}^{\perp}(x, k_{\perp})]$$

Solid-TCS: (E12-12-006A, M. Boer, P. Nadel-Turonski, J. Zhang, Z. Zhao)

SoLID-DVMP: (E12-10-006B, Z. Ahmed, G. Huber, Z. Ye)

DVMP advantages:

- ✓ Direct probe of quark flavor
- ✓ Vector mesons sensitive to H and E
- ✓ Pseudoscaler mesons sensitive to \tilde{H} and \tilde{E} (uniquely w/ neutron)
- ✓ Sensitive to transverse GPDs (H_T , E_T , \tilde{H}_T , \tilde{E}_T)

DVMP disadvantages:

- ✓ Usually requires $Q^2 > 10$ GeV² for factorization
- ✓ Higher twist contaminations
- ✓ Long. photons to link to GPD (LT separation)

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_{\rm L}}{dt} + \frac{d\sigma_{\rm T}}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{\rm LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{\rm TT}}{dt} \cos 2\phi$$

DVMP w/ asymmetries: Belitsky & Müller PLB 513(2001)349, CIPANP 2003).

✓ A_L[⊥] displays factorization even at only Q²~2-4 GeV²:

$$A_{L}^{\perp} = \frac{\sqrt{-t'}}{m_{p}} \frac{\xi \sqrt{1-\xi^{2}} \operatorname{Im}(\tilde{E}^{*}\tilde{H})}{(1-\xi^{2})\tilde{H}^{2} - \frac{t\xi^{2}}{4m_{p}}\tilde{E}^{2} - 2\xi^{2}\operatorname{Re}(\tilde{E}^{*}\tilde{H})}.$$

Deep Virtual Compton Scattering (DVCS):

□ With polarization: $\sigma^{BH+I+DVCS} = \sigma_{UU} + P_L \sigma_{LU} + S_{L,T} \sigma_{UL,UT} + P_L S_{L,T} \sigma_{LL,LT}$ unpol beam pol target pol double pol

D Asymmetry:
$$A = \frac{I}{|\tau_{DVCS}|^2 + I + |\tau_{BH}|^2} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

Polarization	Asymmetries	CFFs
Longitudinal Beam	A_{LU}	$Im\{{\cal H}_p, {\widetilde {\cal H}}_p, {\cal E}_p\}$ $Im\{{\cal H}_n, {\widetilde {\cal H}}_p, {\cal E}_n\}$
Longitudinal Target	A_{UL}	$Im\{{\cal H}_p, {\widetilde {\cal H}}_p\} \ Im\{{\cal H}_n, {\cal E}_n, {\widetilde {\cal E}}_n\}$
Long. Beam + Long. Target	A_{LL}	$\mathcal{R}e\{\mathcal{H}_{p},\widetilde{\mathcal{H}}_{p}\}\ \mathcal{R}e\{\mathcal{H}_{n},\mathcal{E}_{n},\widetilde{\mathcal{E}}_{n}\}$
Transverse Target	A_{UT}	$Im\{\mathcal{H}_p, \mathcal{E}_p\}$ $Im\{\mathcal{H}_n, \mathcal{E}_n\}$
Long. Beam +Trans.Targt	A_{LT}	$\mathcal{R}e\{\mathcal{H}_p, \mathcal{I}_p\}\ \mathcal{R}e\{\mathcal{H}_n, \mathcal{I}_n\}$

Decouple by angular modulations:

 $d\sigma_{UU}^{I} = \frac{-K_{I}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{3} c_{n,unp}^{I} \cos(n\phi), \qquad d\sigma_{LU}^{I} = \frac{-K_{I}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=1}^{2} s_{n,unp}^{I} \sin(n\phi),$ $d\sigma_{UU}^{DVCS} = \frac{1}{Q^{2}} \sum_{n=0}^{2} c_{n,unp}^{DVCS} \cos(n\phi), \qquad d\sigma_{LU}^{DVCS} = \frac{1}{Q^{2}} s_{1,unp}^{DVCS} \sin\phi,$ - H ony $- H + \tilde{H}$ $- H + \tilde{H} + E$ $- H + \tilde{H} +$

Belitsky, Mueller, PRD (2009,2010), NPB (2014)