MOLLER Beamline (and beam)

Kent Paschke UNIVERSITY of VIRGINIA

- Beam asymmetry requirements
- Injector upgrade
- Beamline upgrade
- Beam monitors
- Other beamline issues
- Control of transverse polarization P_T
- Polarimetry

Some Documentation:

- Upcoming Technical Design Report (nearly final!)
- Hall A Beamline optics design J. Benesch and Y. Roblin JINST 16 T12007 (2021)

Kent Paschke

Outline

• Beam Requirement document https://moller.jlab.org/cgi-bin/DocDB/public/ShowDocument?docid=403

Hall A Winter Workshop

Remove correlations to beam intensity, position, angle, and energy fluctuations:

Creates noise and also a systematic false asymmetry from average difference

Monitor resolution			
Calibration imprecision			

Parameter	Noise (65 µA)		
Statistical Width	~82 ppm	Systematic uncertainty budget	
		Error Source	Fractional Error (%
Beam Intensity Resolution	10 ppm	Beam (position, angle, energy)	0.4
Beam Position Noise	7 ppm	Beam (intensity)	0.3
			-

Beam	Assumed	Accuracy of	Required 1 kHz	Required cumulative	Systematic
Property	Sensitivity	Correction	random fluctuations	helicity-correlation	contribution
Intensity	1 ppb / ppb	$\sim 1\%$	< 1000 ppm	< 10 ppb	$\sim 0.1 \ { m ppb}$
Energy	-0.7 ppb / ppb	${\sim}5\%$	< 108 ppm	< 1.4 ppb	$\sim 0.05~{ m ppb}$
Position	1.7 ppb / nm	$\sim 5\%$	$< 47 \ \mu { m m}$	< 0.6 nm	$\sim 0.05~{ m ppb}$
Angle	8.5 ppb / nrad	$\sim 5\%$	$< 4.7 \ \mu rad$	< 0.12 nrad	$\sim 0.05~{ m ppb}$
Spot Size	0.012 ppb / ppm	-	-	< 10 ppm	$\sim 0.1~{ m ppb}$

Keep beam asymmetries small

- Special techniques with the polarized source laser optics
- Beam transport configuration to avoid exacerbating differences
- "slow reversals" that flip the sign of beam asymmetries
- feedback

Kent Paschke

MOLLER Beamline

Beam Corrections

 $\left(A_{cxpt}\right)_{i} = \left(\frac{\Delta F}{2F} - \frac{\Delta I}{2I}\right)_{i} - \sum_{i} \left(\alpha_{i} \left(\Delta X_{i}\right)_{i}\right)$

Beam correction analysis

Two calibration techniques

- beam modulation for calibration
- linear regression

Combined, for precision and accuracy in the PREX-2 analysis

- Removed >90% noise
- 4% precision on total correction

Hall A Winter Workshop

Polarized Source Laser Components

Goal: 2kHz flipping, ~10 µs transition RTP cell developed for this purpose, in use since 2019

E-field non-uniformity drives steering - a new degree of freedom now utilized for control

Kent Paschke

MOLLER Beamline

Electron beam in injector: Δx , $\Delta y < 30$ nm

Configuration study for PREX-2 summer 2019

Hall A Winter Workshop

Slow Flips

Injector Halfwave Plate

- frequent changes (few hours)

Injector Spin Manipulation

• Flip Left

IHWP=0, Run 2523, m_ev_num>15000

Energy spin flip (g-2)

JNIVERSITY

VIRGINIA

- precession in accelerator arcs
- Modest shift in beam energy ($\Delta E \sim 100 \text{ MeV}$)
- intend a few reversals per annual run period

Kent Paschke

Reverses circular polarization relative to PC voltage

 Solenoids + 2 Wien rotations in low-E injector $\cdot \sim$ weekly reversals during run phase 2&3

 $\Delta E \sim 10^{-4}$ is $\Delta \phi \sim 2^{\circ}$, so this must be tuned to very high precision. The experiment itself will provide the required read back of ϕ !

Hall A Winter Workshop

January 27, 2023

5. Horizontal Wien

Injector Upgrade

Phase 1 (Installed Sep 2020 – May 2021)

- 200 keV Gun and Wien Filter Upgrade
- Improves Parity Quality Beam Transmission
- Commissioning May-Jul 2021

Kent Paschke

MOLLER Beamline

Phase 2 (Planned 2023 SAD)

- SRF Booster (2 & 7 cell booster to 10 MeV)
- Improves Parity Quality Beam **Optics**
- SRF Booster commissioned at UITF 2020-2021
- + new 200 keV gun

Hall A Winter Workshop

January 27, 2023

Injector Upgrade

200 kV w/o field emission (demonstrated Sep 2020)

Additional NEG coated BPM (PQB position/angle, mapped)

New 200 keV solenoids (3)

(less astigmatism)

New Y-chamber design

- NEG coated beam line
- Massive NEG pumping arrays
- 44% larger aperture
- Split 15 deg (min. edge focus)

New laser window (UVa)

(min. birefringence)

New 200 keV Wien quad (4)

- Improved air-core design
- Captured bakable coils
- GP-100 NEG @ Wien aperture

Kent Paschke

MOLLER Beamline

AIPINJ – Phase 1 Installation Completed May 2021 (commissioning period May-July)

Hall A Winter Workshop

January 27, 2023

Hall A Beamline Upgrade

- Reduce beam line length to fit MOLLER target location 4.5 m upstream of the usual target location.
- Improve **raster** operation, no longer requiring beamline optics \bullet
- Introduce additional quads & correctors to improve beam line optics (profile, correction range) lacksquare
- Relocate cavity Beam Position Monitors (BPMs) for improved resolution lacksquare
- Improve ground isolation of Beam Current Monitors (BCMs) and add BCM redundancy \bullet
- Move Moller polarimeter target magnet upstream by 30 cm for 11 GeV operation lacksquare

- Relocate raster girder, add new stronger MCG dipole correctors and quadrupoles. Møller polarimeter target moved.

- BCM box not changed, raster hardware not changed.

Begin studying Moller polarimeter optics with new configuration, plus opportunities to take advantage of new beamline optics

JNIVERSITY

/IRGINIA

MOLLER Beamline

Hall A Winter Workshop

Prototype Installation Scope: Stage 1

from the Installation Preliminary Design Review, June 2022

Relocate Existing Items

JNIVERSITY VIRGINIA

- Moller Target Shift 30cm Upstream, onto New Support Features
- UNSER Girder Remove Existing UNSER and Re-Install on New Platform

New Installation

- Girders
 - Raster Mag: 2
 - Quad Girders: 2
- Supports
 - Pedestal: 1
 - Top Frame Weldment
 - Support Brackets for Moller Shift
- Vacuum
 - Drift Spools
 - Vacuum Diag.
 Cross

Features New

Other Mods

- New Support Features Welded to Moller Stand
- Holes in Support Structure for Pedestal
- Will have to Weld new Pads in Place for Stand

Hall A Winter Workshop

January 27, 2023

-

.

BCM resolution

Existing BCM receivers

- Bench tests suggest 22 ppm resolution is expected for each monitor with the newest installed receivers
- Previous (well-known) electronics: ~42ppm

• Seven BCMs on MOLLER beamline: so assuming sqrt(7), existing precision about 8.5 ppm, previous about 16ppm • Multiple high precision BCMs are a powerful cross-check, allowing tests for expected or unexpected discrepancy Goal is 10 ppm per monitor, to enable systematic studies with better resolution

Two strategies for improvement

- JLab electronics to be qualified, and further improvements possible
 - Beam tests to qualify fielded electronics
 - Bench tests suggest further improvements by improving local oscillator
 - Eliminating digital—analog—digital readout chain
- LBNL digital processor prototype (Kolomensky and group)
 - Uses fast sampling ADC's capable of direct RF sampling
 - Eliminates need for local oscillator
 - Initial bench studies give ~ 10 ppm resolution for 960 Hz window pairs
 - Further beam tests required

Readout

- Existing receivers use Digital-to-Analog Convertor \rightarrow Integrators, matching detector readout chain
- Option to use digital readout favored, still being explored. Requires a match to electron detector readout

Kent Paschke

MOLLER Beamline

LBNL prototype receiver

Hall A Winter Workshop

Additional Topics

BPM receivers - Stripline SEE receivers are no longer maintainable. Need benchmarking for in-beam performance of new digital receivers.

Modulation system - Driven modulation to calibration detector sensitivity to beam parameters. Unclear whether existing function generators remain viable.

Fast Feedback / Feed Forward - In PREX-2/CREX the system was problematic - not stable, producing large noise expansion at the 240 Hz flip frequency. Must interface with modulation system (pause/resume). A functioning system can be useful for controlling random jitter to reach systematic goals. Stable lock for average energy also required at ~10⁻⁴.

Beam excursion protection - The CREX and recent GEN incidents are concerning. MOLLER should be pretty robust, but the USTorus / collimator region is just not serviceable. Improved engineered controls and a careful fault analysis are required.

Kent Paschke

MOLLER Beamline

Transverse Analyzing Power

for longitudinal polarization were really bad at precisely measuring it

€

MOLLER Beamline

€

Hall A Winter Workshop

 $A_T \propto -$

January 27, 2023

10

€

Transverse Polarization

- Unique signature of transverse beam polarization over azimuthal detected distribution
- 50 ppb error on $A_T^*P_b$ in 4 hours: 1° precision
- Over entire run: feedback will hold transverse polarization small (<<1 degree)
 - Initial beam setup \sim 1-2 degrees vertical, similar in horizontal with spin dance?

 - 10⁻³ linac imbalance is also $\sim 2^{\circ}$ horizontal P_T

 - Over entire run, feedback will hold transverse polarization small (<<1 degree)
 - Note: this is also how the g-2 energy flip will be fine-tuned

Kent Paschke

MOLLER Beamline

Transverse polarization analyzing power has been measured and calculated for *ee* scattering It is relatively quite large relative to A_{PV} but varies widely over the acceptance

Average transverse asymmetry

• 10⁻⁴ change in beam energy $\sim 2^{\circ}$ horizontal, so quality of beam energy lock will be important

• "Feedback" of integrated value of PT to correct offset. Expect to use Wien in injector, at 1° - 2° level

Møller Polarimeter

Møller spectrometer change (target move 30cm)

- Differential acceptance for tightly bound inner shell electrons will distort the theoretical analyzing power (Levchuk effect)
- 11 GeV optics requires a larger drift in Møller polarimeter spectrometer to minimize this distortion
- Large plateau in quad-scan with negligible correction represents tune is robust against small perturbations
- This is incorporated in the "Stage 1" beamline upgrade, to gain operational experience with new Møller polarimeter optics
- Polarimeter will be operable from 1.5-11 GeV.

Other upgrades described by Eric King <u>vesterday</u>:

- Collimator to limit acceptance
- GEM trackers to verify acceptance model
- Upgrade dipole power supply for sufficient bend at 11 GeV

Hall A Winter Workshop

January 27, 2023

100%
88%
75%
63%
50%
38%
25%
13%
0%

Normalized Moller Rate

100% 95% 90% 85% 75% 65% 55% 50%

Compton Polarimeter

- New tracking electron detector
 - CFI supported HVMAPS planes
 - JLab diamond µstrip planes
- Upgraded laser
- Photon calorimeter optimized for 11 GeV
- DAQ requires preparation for 2kHz, incorporation of e- detector readout

Laser system work in JLab laser lab (w/Cameron Cotton from UVa)

Goal: robust doubling and locking

Kent Paschke

MOLLER Beamline

Trying for more robust and maintainable locking with commercial electronics First success (low power lock)!

Hall A Winter Workshop

Compton Electron detector progress

Manitoba HVMAPS

JLab HIPPOL diamond µstrip

- Trying to build off successful Qweak experience, but requires new diamond fabrication and significant upgrades
- Evaluating "FLAT-32" and "SAMPA" readout chips
- Diamond-strip test planes built and characterized (H.Kagan at OSU)

Kent Paschke

MOLLER Beamline

• HVMAPs will be also used in main MOLLER detector chips procured and detector configuration designed • working on mounting, motion, and cooling in vacuum

Kapton flex print w traces to the chip

Work by Nafis Niloy

Hall A Winter Workshop

The experiment is designed for commissioning and calibrating beam delivery and monitoring

Run Phase 1

- Spectrometer optics, acceptance, alignment
- First look at backgrounds
- Test sufficiency of beam correction tools
- beam quality (asymmetry and halo)
- Tests of polarimetry precision Result: near precision of SLAC-E158 with 14 days production

Run Phase 2

- statistical behavior of measured asymmetries
- quality of "slow" reversals (Wien, g-2)
- precision on background, normalization, beam corrections, polarization

Result: 2.5x beyond SLAC-E158, $\delta(sin^2\theta_W)=0.00044$ (stat), 0.00047 (stat+syst)

Run Phase 3

ultimate precision, ultimate systematic uncertainty **Result:** $\delta(sin^2\theta_W)=0.00024$ (stat), 0.00028 (stat+syst)

Kent Paschke

MOLLER Beamline

Run Phases

Progressively improve statistical power

Run Period	Ι	Π	III
1 kHz Width Goal	101 ppm	96 ppm	91ppm
Width over counting statistics	23%	17%	11%
Excess noise over counting statistics	59 ppm	50 ppm	40 ppm
Allowance over ultimate goal	44 ppm	31 ppm	_

and systematic control

Error Source	Fractional Error (%)	
	Run 1	Ultimate
Statistical	11.4	2.1
Absolute Norm. of the Kinematic Factor	3	0.5
Beam (second moment)	2	0.4
Beam polarization	1	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	2	0.4
Beam (position, angle, energy)	2	0.4
Beam (intensity)	1	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.6	0.3
$\gamma^{(*)} + p \rightarrow (\pi, \mu, K) + X$	1.5	0.3
$e + Al(+\gamma) \rightarrow e + Al(+\gamma)$	0.3	0.15
Transverse polarization	2	0.2
Neutral background (soft photons, neutrons)	0.5	0.1
Linearity	0.1	0.1
Total systematic	5.5	1.1

Hall A Winter Workshop

Summary

- production, delivery, and monitoring
- Some MOLLER activities will require coordination with other operations
- measurements
- achieved within a staged schedule
- There is still a lot of work to be done! (Collaborators welcome)

MOLLER has been designed to run with high statistical power to achieve unprecedented precision with robust control of systematic uncertainties

• The ultra-high precision MOLLER measurement will require careful attention to beam

• The precision for determination of the beam transverse polarization with the MOLLER apparatus is a unique and powerful tool for testing absolute energy stability in CEBAF • The improvements in the CEBAF and Hall A beamlines will be available for future Hall A

• The goals of the experiment account for the ultimate performance of this apparatus to be

