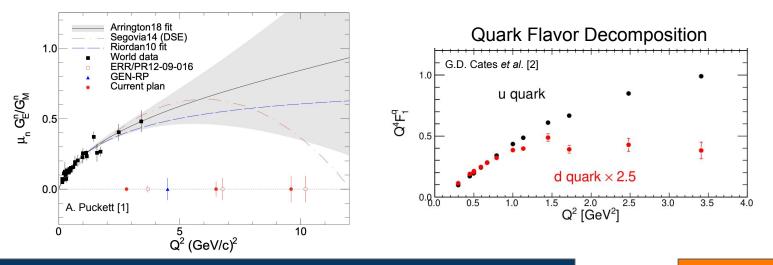
SBS GEn-II Experiment Running and First Look at Data

Sean Jeffas


University of Virginia

Hall A Collaboration Meeting January 27, 2023

Neutron Electromagnetic Form Factor Ratio

- Previous experiments measured the proton ratio G_E^p/G_M^p up to Q² = 8 GeV² and the neutron ratio G_E^n/G_M^n up to Q² = 3.5 GeV².
- Extend neutron data by almost 3x up to 9.7 GeV.
- Will give many insights into the quark structure.

January 27, 2023

Double Polarization Method

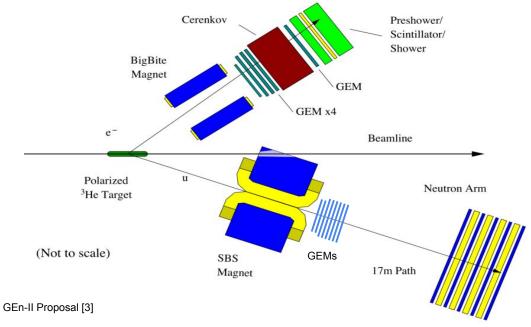
- With a polarized electron beam on a polarized neutron target the elastic scattering cross section can be written as the sum of two parts:
 - \circ **\Sigma** corresponds to the unpolarized cross section.
 - \circ Δ corresponds to the polarized cross section.
 - h is helicity (± 1)


 $\sigma = \Sigma + h\Delta$

• The neutron spin asymmetry is then:

$$A_N = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = \frac{\Delta}{\Sigma}$$

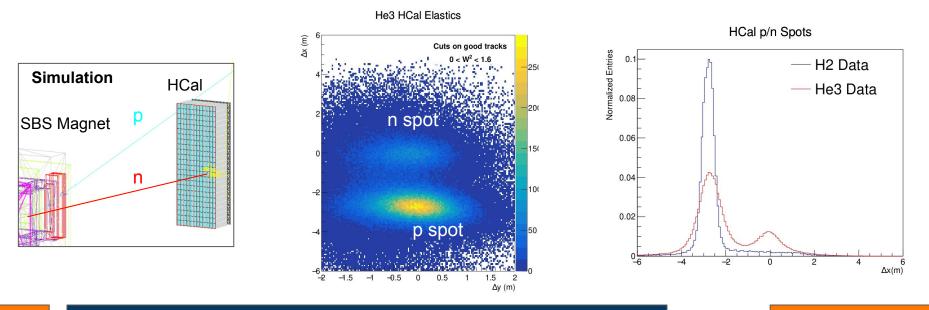
$$A_N = -\frac{2\sqrt{\tau(\tau+1)}\tan(\theta/2)\frac{G_E^n}{G_M^n}\sin\theta^*\cos\phi^*}{\left(\frac{G_E^n}{G_M^n}\right)^2 + \tau + 2\tau(1+\tau)\tan^2(\theta/2))}$$


$$-\frac{2\tau\sqrt{1+\tau} + (1+\tau)^2\tan^2(\theta/2)}{\left(\frac{G_E^n}{G_M^n}\right)^2 + \tau + 2\tau(1+\tau)\tan^2(\theta/2))}$$

3/10

SBS GEn-II Experiment

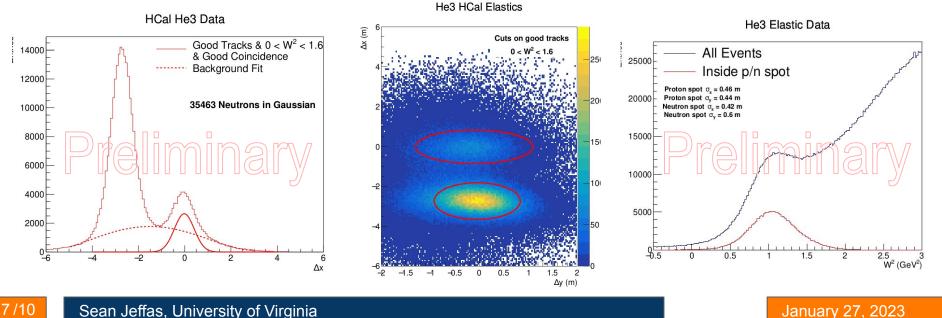
- Started in October 2022.
- GEn-II experiment will collide polarized electron beams onto a polarized ³He target.
 - Same detector packages as used for GMn, **thanks fo all the GMn student work.**
- It will then measure the neutron FF ratio at $Q^2 = 2.9$, 6.6, and 9.7 GeV².


GEn Running

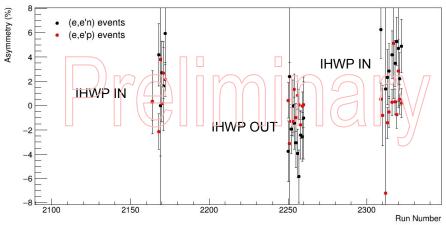
	Commissioning	Gen Q ² = 2.9	GEn Q ² = 6.6	Gen Q ² = 9.7
Time Period	10/10/22 - 10/12/22	10/14/22 - 10/30/22	11/10/22 - 12/14/22	1/15/23 - ongoing
Expected Charge (C)	NA	15.55	60	160
Actual Charge (C)	NA	5.18	45.42	7.56
Average Polarization (in beam)	NA	25%	43.7%	43.7%

- Despite significant experiment downtime issues we are close to our statistics goals.
- Statistics goals assumed target polarization of 45%.
 - Near this goal for most of $Q^2 = 6.6$
 - Appears we will surpass this for $Q^2 = 9.7$, which is extremely good given the low statistics.
 - Huge thanks to the GEn target group!
 - See Arun's talk next for details on the ³He target.

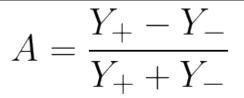
Proton/Neutron Separation


- Scattered hadrons are bent through the SBS magnet.
- Expected hadron position can be calculated from elastic electrons in BB.
- Can clearly separate protons and neutrons.
- SBS magnet set to full field for all of GEn, there is no need to save scattered protons.

January 27, 2023


$Q^2 = 2.9$, Neutron Yield

- Only 20% of the total collected data is shown below.
- Using 4th order polynomial for background fit yields ~35,000 neutrons.
 - Expected ~30,000, very good agreement! Ο
- Cutting on the p/n spots shows a clear elastic peak.

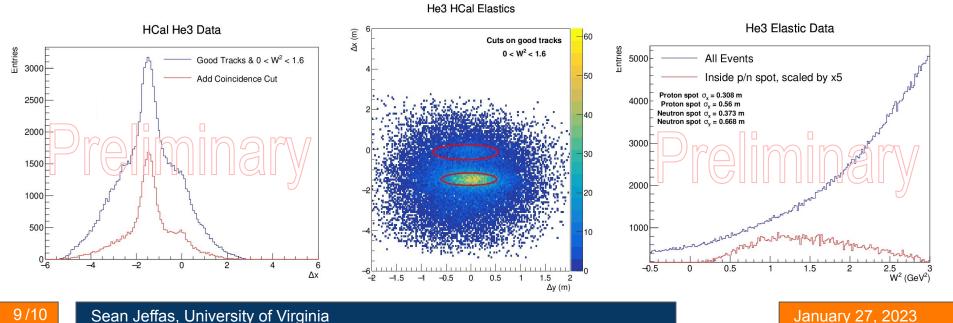


$Q^2 = 2.9$, Raw Asymmetries

- Count helicity states of neutrons inside neutron spot.
- Very raw asymmetry results.
 - No charge or live time corrections.
- Neutron $A_N \sim 3\%$ is within the expected range, proton A_P consistent with 0%.
- Clearly see IHWP flip and sign matches expectation.

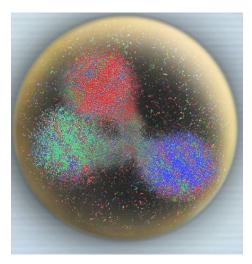
	(e,e'n)	(e,e'p)
Y ₊	23716	71320
Y_	22193	71047
A	3.31% +/- 0.47%	0.19% +/- 0.27%

Asymmetry vs Run Number


Sean Jeffas, University of Virginia

8/10

January 27, 2023


$Q^2 = 6.6$, More Challenges

- $\sim 10\%$ of total data collected is shown below.
- Much more background, coincidence cut is extremely necessary.
- Too few events to see elastic peak so far.
- Lots more work to be done

Summary

- GEn-II experiment will use double polarization to measure G_E^n/G_M^n .
- Will extend our Q² coverage from 3.5 to 9.7 GeV².
- Currently running at Q^2 of 9.7.
- Promising results so far and lots of work to be done going forward.

References

- [1] Andrew Puckett, Details of updated SBS-GEN statistical uncertainty projections: https://sbs.jlab.org/cgi-bin/DocDB/private/ShowDocument?docid=354
- [2] G.D. Cates, C.W. de Jager, S. Riordan, B. Wojtsekhowski, Phys. Rev. Lett. **106**, 252003 (2011)
- [3] B. Wojtsekhowski, T. Averett, G. Cates, S. Riordan (spokespersons), Jefferson Lab experiment E12-09-016 -GEn(2): <u>https://misportal.jlab.org/mis/physics/experiments/viewProposal.cfm?paperId=617</u>
- [4] Bogdan Wojtsekhowski , GEn 2020 Experimental Readiness Review: https://hallaweb.jlab.org/wiki/images/6/6c/GEn-ERR_overview%281%29.pdf