SBS-Gⁿ_M Analysis Update

Provakar Datta

(On behalf of the SBS Collaboration)

Hall A Collaboration Meeting, 01/27/2023

Theory & Motivation

Ran in Jefferson Lab's Experimental Hall A from Fall 2021 to February 2022.

Jefferson Lab

Coal: High precision measurement of G_M^n at $Q^2 = 3, 4.5, 7.5, 10 \& 13.5 (GeV/c)^2$.

Hall A Collaboration Meeting, 01/27/2023

Apparatus & Measurement Technique

^[1] L. Durand, Phys. Rev. 115 1020 (1959).

Jefferson Lab

- 3 major steps to get G_M^n :
 - Extracting QE cross section ratio, R'', directly $R'' = \frac{\frac{d\sigma}{d\Omega}|_{d(e,e'n)}}{\frac{d\sigma}{d\Omega}|_{d(e,e'p)}}$ from the experiment:

Apply nuclear corrections to obtain:

$$R' = \frac{\frac{d\sigma}{d\Omega}|_{\boldsymbol{n}(e,e')}}{\frac{d\sigma}{d\Omega}|_{\boldsymbol{p}(e,e')}} \equiv \frac{\frac{\sigma_{Mott}}{1+\tau} \left(G_E^{n\,2} + \frac{\tau}{\epsilon} G_M^{n\,2}\right)}{\frac{d\sigma}{d\Omega}|_{\boldsymbol{p}(e,e')}}$$

3 Finally,

$$G_{M}^{n} = -\left[\frac{1}{\tau}\frac{d\sigma}{d\Omega}\right]_{p(e,e')} R' - \frac{\epsilon}{\tau}G_{E}^{n\,2}\right]^{\frac{1}{2}}$$

* "Ratio method" is way less sensitive to systematic errors than other measurement techniques.^[1]

Analysis Status

- We have recently finished 1st pass cooking of the entire SBS-Gⁿ_M dataset. We wanted it to happen faster but both BigBite & Super BigBite spectrometers are new, which has made calibration significantly harder for us. In addition to that, an enormous raw data volume (≈ 2 PB!) was also not helping.
- Currently we are working on developing the analysis machinery to do quasi-elastic event selection. We are also finetuning various detector calibrations to get ready for 2nd pass cooking.
- In parallel, a huge effort is ongoing to create a MC event generator with realistic nuclear and radiative effects.

Jefferson Lab

- Highlights of Detector Performance with Preliminary Calibrations:
 - BigBite Spectrometer:
 - Momentum resolution: $\frac{\sigma_p}{p} \approx 1 1.5\%$
 - Angular resolution (in-plane & out-of-plane): 1 2 mrad
 - Vertex resolution: $\sigma_z \leq 1 \text{ cm}$
 - BigBite Calorimeter(BBCAL) energy resolution: 5.9% at
 3.6 GeV scattered e⁻ energy.
 - Super BigBite Spectrometer:
 - Hadron Calorimeter (HCAL):
 - Time Resolution: $\sigma_t \approx 0.5 1$ ns
 - Angular Resolution: ~2 mrad

Quasi-Elastic (QE) Event Selection

• Introducing HCAL Δx plot:

- Primary Cuts:
 - 1. Presence of a track
 - 2. $|(vertex)_z| < 0.08 \text{ m}$
 - 3. PS cluster energy > 0.2 GeV
 - 4. Cut on reconstructed track momentum (kinematics dependent)
- QE Event Selection Cuts: (Q² dep.)
 - 1. Cut on W^2
 - 2. Cut on Δy
 - 3. Cut on θ_{pq} (angle between reconstructed nucleon momentum (\vec{p}) and the momentum transfer vector (\vec{q}))
 - 4. Fiducial/Acceptance Cuts
- Fitting Δx plot we can extract d(ee'n) & d(ee'p) yields and then form the ratio:

$$\mathbf{R}'' = \frac{\frac{d\sigma}{d\Omega}|_{d(e,e'n)}}{\frac{d\sigma}{d\Omega}|_{d(e,e'p)}}$$

Implementation of Fiducial Cut on \vec{q}

 $Q^2 = 3 (GeV/c)^2$

- The idea is to accept a n (p) event only if a p (n) event with equivalent kinematics would also be guaranteed to hit the active area of HCAL.
- The fiducial cut is only based on the scattered-electron angle and momentum measured by BigBite.
- As "active area" (red dashed lines) we consider entire HCAL excluding the outermost rows and columns.
- We also use an additional "safety margin" (blue dashed lines) based on the widths of the Δx & Δy distributions for p & n to encounter the effects of Fermi motion to some extent.

QE Event Selection contd.

SBS Config.	Q² (GeV/c)²	E _{beam} (GeV)	θ _{вв} (deg)	d _{вв} (m)	θ _{SBS} (deg)	d _{sвs} (m)	d _{HCAL} (m)
SBS-4	3.0	3.73	36.0	1.79	31.9	2.25	11.0
SBS-9	4.5	5.97	49.0	1.55	22.5	2.25	11.0
SBS-14	7.4	5.97	46.5	1.85	17.3	2.25	14.0
SBS-7	9.9	7.91	40.0	1.85	16.1	2.25	14.0
SBS-11	13.5	9.86	42.0	1.55	13.3	2.25	14.5

Table I: Kinematics of SBS-Gⁿ_M

- Apart from Gⁿ_M extraction, SBS-9 data will also be used for Rosenbluth separation to shed some light on the TPE contribution in the elastic *e*-*n* scattering. Sebastian Seeds will talk about this data set in his presentation, which is scheduled to take place right after mine.
- In the following few slides I will be showing representative preliminary quasi-elastic event selection plots from all the SBS-Gⁿ_M configurations excluding SBS-9 to avoid duplication.

QE Event Selection: $Q^2 = 3$ (GeV/c)² [SBS-4]

- All primary cuts listed on page 5.
- **Fiducial Cuts**
- $0.49 \le W^2 \le 1.44 \text{ GeV}^2$ ($\Delta x \And \Delta x \lor \Delta y \text{ plots}$)
- $|\Delta y| < 0.3 \text{ m} (\Delta x \& \Delta x \text{ vs } \Delta y \text{ plots})$
- $\theta_{pq} < 1.4^{\circ}$ with p hypothesis (W² plot)
- $\theta_{pq} < 1.4^{\circ}$ with n hypothesis (W² plot)
- We fit the Δx distribution to sum of two Gaussian signals (p & n) along with a 4th degree polynomial background to extract raw d(e, e'(p, n)) yields.

QE Event Selection: $Q^2 = 7.4$ (GeV/c)² [SBS-14]

- All primary cuts listed on page 5.
- **Fiducial Cuts**
- $0.38 \le W^2 \le 1.38 \text{ GeV}^2$ ($\Delta x \& \Delta x \text{ vs } \Delta y \text{ plots}$)
- $|\Delta y| < 0.3 \text{ m} (\Delta x \& \Delta x \text{ vs } \Delta y \text{ plots})$
- $\theta_{pq} < 1.1^{\circ}$ with p hypothesis (W² plot)
- $\theta_{pq} < 1.1^{\circ}$ with n hypothesis (W² plot)
- We fit the Δx distribution to sum of two Gaussian signals (p & n) along with a 4th degree polynomial background to extract raw d(e, e'(p, n)) yields.

QE Event Selection: $Q^2 = 9.9 (GeV/c)^2 [SBS-7]$

Jefferson Lab

Figures: HCAL Δx (Top Left), HCAL Δx vs Δy (Top Right), W² (Bottom Left)

- All primary cuts listed on page 5.
- Fiducial Cuts
- $0.38 \le W^2 \le 1.38 \text{ GeV}^2 (\Delta x \& \Delta x \text{ vs } \Delta y \text{ plots})$
- $|\Delta y| < 0.3 \text{ m} (\Delta x \& \Delta x \text{ vs } \Delta y \text{ plots})$
- $\theta_{pq} < 1.1^{\circ}$ with p hypothesis (W² plot)
- $\theta_{pq} < 1.1^{\circ}$ with n hypothesis (W² plot)
- We fit the Δx distribution to sum of two Gaussian signals (p & n) along with a 4th degree polynomial background to extract raw d(e, e'(p, n)) yields.

QE Event Selection: $Q^2 = 13.5$ (GeV/c)² [SBS-11]

Jefferson Lab

Figures: HCAL Δx (Top Left), HCAL Δx vs Δy (Top Right), W² (Bottom Left)

- At 13.5 GeV² kinematic broadening of W² is significant. Hence, we have used a wider W² cut: -1 ≤ W² ≤ 2 GeV²
- Same as other Q² points, we fit the Δx distribution to sum of two Gaussian signals (p & n) along with a 4th degree polynomial background to extract raw d(e, e'(p, n)) yields.

Hall A Collaboration Meeting, 01/27/2023

Raw Yields & Preliminary Uncertainty Projections

Table I: Estimated Raw QE Yields from $SBS-G_M^n$ dataset

Q² (GeV/c)²	E _{beam} (GeV)	Raw QE Yields	$\begin{array}{c} \textbf{Projected} \\ \Delta_{stat}(\textbf{G}_{M}^{n}/\textbf{G}_{M}^{p}) \end{array}$	$\begin{array}{c} \textbf{Projected} \\ \Delta_{syst}(\textbf{G}_{\textbf{M}}^{n}/\textbf{G}_{\textbf{M}}^{p}) \end{array}$
3.0	3.73	471,000	0.12%	1.4%
4.5	5.97	1,092,000	0.07%	0.6%
7.4	5.97	76,700	0.30%	1.6%
9.9	7.91	13,100	0.70%	1.8%
13.5	9.86	19,200	0.60%	2.5%

- Relative statistical uncertainties in Gⁿ_M/G^p_M is estimated from the raw yields we got using the analysis shown in the previous slides.
- Projected systematic uncertainties have been taken from experiment proposal.
- Things we haven't considered:
 - HCAL *p*/*n* detection efficiency corrections
 - Radiative corrections

Jefferson Lab

Nuclear corrections

Nucleon misidentification probabilities and many more

Data vs Simulation: Q² = 3 (GeV/c)² [SBS-4]

 Q^2 = 3 GeV 2 , 0.49 $\leq W^2 \leq$ 1.44 GeV 2 , Fiducial Cuts

Jefferson Lab

- We used GEANT4 framework to generate quasi-elastic events on LD2 target which we then digitized and reconstructed using the same replay machinery we use to cook real data.
- All the same cuts have been used for data and simulation analysis.
- Radiative corrections are yet to be implemented in MC event generator.
- Agreement of fit looks very promising even at this early stage of analysis.

Data vs Simulation: Q² = 7.4 (GeV/c)² [SBS-14]

• Unlike 3 GeV², at 7.4 GeV² we have significant inelastic contamination. Hence, we had to add a second parameter (*B*) to fit an appropriate background distribution. We got the background distribution from data using $\Delta y > 0.6$ m cut.

 $simu_i = \mathcal{N}_i * (p_histo_i + \mathbf{R} * n_histo_i + \mathbf{B} * bg_histo_i)$

Resulting fit looks encouraging in this case as well.

- SBS-Gⁿ_M experiment was completed successfully in February 2022. Thanks to the tireless work of Hall A technicians, Graduate students, Post Docs, JLab Staff Scientists, and Professors.
- Calibration of entirely new spectrometers and enormous raw data volume (≈ 2 PB!) have made preliminary data processing very challenging for us.
- Despite all these challenges we have recently finished the 1st pass cooking of entire SBS-Gⁿ_M dataset!
- A huge effort of data analysis is ongoing. Quasi-elastic event selection seems reasonably clean for even the highest Q² point with very basic cuts. Agreement with simulation looks encouraging as well.
- Preliminary projected uncertainties estimated from raw d(e, e'(p, n)) counts show promising results. Precision of the highest Q² data point (13.5 GeV²) is expected to stay unmatched for years to come.
- Our goal is to get preliminary results out by the end of this summer.
- Acknowledgement: This work is supported by the US Department of Energy Office of Science, Office of Nuclear Physics, Award ID DE-SC0021200.

- SBS-Gⁿ_M experiment was A technicians, Graduate
- Calibration of entirely nella

Anuruddha Rathnayake Ralph Marinaro (GEMs) (BigBite Hodoscope)

Thank You for Your Attention!

ed uncertainties e**Questions? Comments?** (*p*,*n*)) counts show the provide the point (13.5 GeV²) is expected to stay unmatched

reliminary results out by

Provakar Datta

(BigBite Calorimeter) ent: This work is supported

his summer.

Maria Satnik partment of Energy Office of (GRINCH)

 $SBS-G_M^n$ Thesis Students

Nathaniel Lashley (Beamline)

Backup Slides

HCAL Δy Distributions

Visualizing θ_{pq} Cuts: Q² = 9.9 (GeV/c)² [SBS-7]

UGONN

Primary Cuts

χ^2 Minimization with Two Fit Parameters (R & B)

 χ^2 vs R & B

UEONN

Analysis Flowchart

Hall A Collaboration Meeting, 01/27/2023

UEONN