${}^{3}\text{H}/{}^{3}\text{He inclusive}$ measurements in the x \geq 1 region

Nathaly Santiesteban On behalf of the E12-11-112 collaboration

Hall A Collaboration Meeting January 27, 2023

Motivation

³He and ³H mirror nuclei:

- ³He (protons) \leftrightarrow ³H(neutrons)
- ✦ Few-body nuclei
- ✦ Benchmark data
- \blacklozenge cancellation of experimental systematics, nuclear effects

Inclusive Measurements

- Sum of Short-range correlations: 3He/3H (2pn + pp)/(2pn + nn) (x>1) Ratio of pp to pn pairs assuming isospin symmetry
- + Access G_M^n : Effective neutron target (x=1)
- Charge radius of 3H vs 3He (x=3)

Target System

Data Analysis Particularities

Hydrogen Contamination in the Tritium Second Cell

The kinematics with hydrogen contamination were corrected with simulation or data when available.

1. Isospin-dependence of SRC

E12-11-112 Results

What did we expect?

$$\frac{\sigma_{^{3}H}}{\sigma_{^{3}He}} = \frac{N_{np}\sigma_{np} + N_{pp}\sigma_{nn}}{N_{np}\sigma_{np} + N_{pp}\sigma_{pp}}$$

Off shell cross sections:

$$\sigma_{np} = \sigma_{ep} + \sigma_{en}$$
$$\sigma_{pp} = 2\sigma_{ep}$$

number of pp to np pairs in $R_{pp/np} = N_{pp}/N_{np}$ ³*He*: Assuming the same for the

mirror nuclei ${}^{3}H$

np dominance:

$$R_{pp/np} = 0 \to \frac{\sigma_{^3H}}{\sigma_{^3He}} = 1$$

pp dominance:

$$R_{pp/np} = 0.5, \sigma_{p/n} = 2.55 \rightarrow \frac{\sigma_{^3H}}{\sigma_{^3He}} = 0.75$$

What does this mean?

References:

inclusive:

Ca48: Nguyen, D. et al. Phys. Rev. C, 102, 064004 (2020)

exclusive:

H3/He3 e'p; Cruz-Torres, R.et al. Phys. Lett. B797,134890 (2019) He4: Korover, I.et al. Phys. Rev. Lett.113,022501 (2014) C12(old SCX): Subedi, R.et al. Science, 320, 1476–1478 (2008). e'pN in Solid blue: Duer, M.et al.Phys. Rev. Lett.122, 172502 (2019) Ratio of np/pp SRC pairs in A=3 nuclei:

 $R_{np} = 4.2 \pm 0.4$

Removing contribution from pair counting, 2 np pairs vs 1 np pair

$$R_{np} = 2.1 \pm 0.2$$

Published in: Nature 609 (2022) 7925, 41-45

Next Studies

1.9 GeV² data compared with calculations:

- ~5% normalization difference?
- difference at QE peak
- can not describe lower Q2 data well

Focus in the 3N SRC

- Inclusive cross section (and ratios)
- Compare with calculations

2. Elastic Measurement

	<r²<sub>rms>_{3H}</r²<sub>	<r²<sub>rms>_{3He}</r²<sub>		
GFMC	1.77(1)	1.97(1)		Goal: Extract the charge radius
χ EFT	1.756(6)	1.962(4)		
SACLAY	1.76(9)	1.96(3) —	$\Delta \mathbf{R}_{\mathrm{RMS}} = \mathbf{0.20(10)}$	Current experimental results:
BATES	1.68(3)	1.97(3)	$\Delta \mathbf{R}_{\mathrm{RMS}} = \mathbf{0.29(04)}$	discrepancies
				Ĩ

Jefferson Lab Experiment E1214009

Ratio of the electric form factor in the mirror nuclei 3He and 3H

Spokespersons:

Arrington, John Lawrence Berkeley Laboratory, Berkeley, CA johna@jlab.org Averett, Todd The College of William and Mary <u>averett@jlab.org</u> Higinbotham, Douglas Jefferson Lab doug@jlab.org Myers, Luke Bluffton University <u>lmyers@jlab.org</u> Motivated by the E12-14-009 experiment. *Never scheduled*

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp.} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{F_{ch}^2 + \tau F_M^2}{1 + \tau} + 2\tau F_M^2 tan^2(\frac{\theta}{2})\right]_{Mott}$$

 $q^2 = 0$

Extracting the charge radius in the limit $q^2 \rightarrow 0$: $\langle r^2 \rangle \equiv -6 \hbar^2 \frac{dF(q^2)}{dq^2}$

Normalization Uncertainties

	Systematic	
Source	Relative per Target	$^{3}\mathrm{H}/^{3}\mathrm{He}$ ratio
Charge	3%	0.2%
Acceptance	2%	0.2%
Radiative Correction	1.5%	0.3%
Target Thickness	0.4% for $^3{\rm H}$, 1% for $^3{\rm He}$	1.06%
Scattering Angle	0.9%	0.1%
Boiling	0.5%	0.1%
Beam Energy	0.3%	0.05%
Tracking Efficiency	0.2%	0.05%
Hydrogen contamination	0.2%	0.2%
3 He contamination	0.1% conservative	0.1%
(Trigger + PID) cuts	0.1%	0.05%
Endcaps contamination	0.1%	0.05%
Total Systematic	$4.35\%~{\rm for^{3}H}$, $4.29\%~{\rm for}~{^{3}{\rm He}}$	1.17%
	Statistical	
Total Statistical	1.14% for $^3\mathrm{H}$, 0.89% for $^3\mathrm{He}$	1.44%

Target	Total Uncertainty
³ Н	4.35%
³ He	4.29%
³ H/ ³ He Ratio	1.85%

Impact in the world ³H data normalization

$$\chi^{2} = \sum_{i=1}^{1=N} \left(\sum_{j=1}^{j=j_{max}} \frac{(n_{i}\sigma_{ij} - F(\vec{a}, Q_{j}^{2}))^{2}}{(\Delta\sigma_{ij})^{2}} \right) + \frac{(n_{i} - 1)^{2}}{\Delta n_{i}}$$

Earlier data had questions about the normalization (density of the targets).

Current Status

Sensitivity study is done

 Δn_i Normalization for: Beck(1984) data set is 2.25% Beck(1982) data set is 7% and for Collard(1965) data set is 2%.

Next Step: Formalize normalization mechanism. Estimate the charge radius.

3. Gⁿ_M measurement

$$\left(\frac{d\sigma}{d\Omega}\right)_n = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{1}{1+\tau} \left((G_E^n(Q^2))^2 + \frac{\tau}{\varepsilon} (G_M^n(Q^2))^2 \right)$$

Ideally, but not possible.

If measuring neutrons (no charge):Energy information from time of flightRequires precise measurement of neutron detection efficiencies

Measurement Corrections:

- Reaction mechanisms FSI and MEC
- Nuclear structure

E12-11-112 Goal

Measure the neutron magnetic form factor using the ${}^{3}H/{}^{3}He$ cross-section ratios

We have shown extracted Cross sections in the past let's see how we get to G_M^n

1. Remove the inelastic distribution from the cross sections

- 1. Remove the inelastic distribution from the cross sections
- 2. Integrate the $\pm 1 \sigma$ region (in both the model and the data), and calculate the ratio $R = {}^{3} H / {}^{3} He$

- 1. Remove the inelastic distribution from the cross sections
- 2. Integrate the $\pm 1 \sigma$ region (in both the model and the data), and calculate the ratio $R = {}^{3} H/{}^{3}He$
- 3. Estimate the medium effects (α) from the model ratio:

$$R^{Model} = \alpha \frac{2\sigma_n + \sigma_p}{\sigma_n + 2\sigma_p}$$

The nucleon cross sections are calculated with the from factors from Z. Ye, J. Arrington, R. J. Hill, and G. Lee, Physics Letters B 777, 8 (2018).

0.0000

1.10

1.15

1.20

1.25

1.30

 ω [GeV]

1.35

1.40

- 1. Remove the inelastic distribution from the cross sections
- 2. Integrate the $\pm 1 \sigma$ region (in both the model and the data), and calculate the ratio $R = {}^{3} H/{}^{3}He$
- 3. Estimate the medium effects (α) from the model ratio.
- 4. The magnetic form factor is calculated from the data .
- 5. Calculate the σ_n/σ_p from the data ratio using the medium effects:

$$(\sigma_n/\sigma_p)^{Data} = \frac{\alpha - 2R^{Data}}{R^{Data} - 2\alpha}$$

1.45

- 1. Remove the inelastic distribution from the cross sections
- 2. Integrate the $\pm 1 \sigma$ region (in both the model and the data), and calculate the ratio $R = {}^{3} H / {}^{3} He$
- 3. Estimate the medium effects (α) from the model ratio.
- 4. The magnetic form factor is calculated from the data .
- 5. Calculate the σ_n/σ_p from the data ratio using the medium effects.
- 6. Estimate $\sigma_n^{Data-(Born+TPE)}$

 $\sigma_n^{Data-(Born+TPE)} = (\sigma_n/\sigma_p)^{Data} \sigma_p^{Fit-(Born+TPE)}$

Using $\sigma_p^{Fit-(Born+TPE)}$ from direct fit to measured cross sections with no TPE correction J. Arrington, W. Melnitchouk, and J. A. Tjon, Phys. Rev. C 76, 035205 (2007).

- 1. Remove the inelastic distribution from the cross sections
- 2. Integrate the $\pm 1 \sigma$ region (in both the model and the data), and calculate the ratio $R = {}^{3} H/{}^{3}He$
- 3. Estimate the medium effects (α) from the model ratio.
- 4. The magnetic form factor is calculated from the data .
- 5. Calculate the σ_n/σ_p from the data ratio using the medium effects.
- 6. Estimate $\sigma_n^{Data-(Born+TPE)}$
- 7. Extract the born cross section (σ_n^{Born}) , after correcting for the TPE.

$$\sigma_n^{Born} = \sigma_n^{Data - (Born + TPE)} C_{TPE}^{e-n}$$

- Remove the inelastic distribution from 1. the cross sections
- 2. Integrate the $\pm 1 \sigma$ region (in both the model and the data), and calculate the ratio $R = {}^{3} H / {}^{3} H e$
- 3. Estimate the medium effects (α) from the model ratio.
- The magnetic form factor is calculated 4. from the data.
- Calculate the σ_n/σ_p from the data ratio 5. using the medium effects. Estimate $\sigma_n^{Data-(Born+TPE)}$
- 6.
- Extract the born cross section (σ_n^{Born}), 7. after correcting for the TPE.
- Extract the form factor: 8.

$$G_M^n = \left(\left[\sigma_n^{Born} - \frac{\epsilon}{\tau} (G_E^n)^2 \right] \right)^{1/2}$$

with G_E^n from Z. Ye, J. Arrington, R. J. Hill, and G. Lee, Physics Letters B 777, 8 (2018).

Summary

