

JLab Hall A Winter Collaboration Meeting, Jan 26-27, 2023

Strangeness production in tritium by electron scattering

Kyoto University, Japan

Toshiyuki Gogami

Jan 26, 2023

✓ HRS-HRS @ Hall A
✓ Tritium target
✓ (e,e'K⁺)
✓ Oct—Nov 2018

PTEP Progress of Theoretical and Experimental Physics

The cross-section measurement for the ${}^{3}H(e, e'K)$ nn Λ reaction \Im

K N Suzuki 🖾, T Gogami, B Pandey, K Itabashi, S Nagao, K Okuyama, S N Nakamura, L Tang, D Abrams, T Akiyama, D Androic, K Aniol, C Ayerbe Gayoso, J Bane, S Barcus, J Barrow, V Bellini, H Bhatt, D Bhetuwal, D Biswas, A Camsonne, J Castellanos, J-P Chen, J Chen, S Covrig, D Chrisman, R Cruz-Torres, R Das, E Fuchey, K Gnanvo, F Garibaldi, T Gautam, J Gomez, P Gueye, T J Hague, O Hansen, W Henry, F Hauenstein, D W Higinbotham, C E Hyde, M Kaneta, C Keppel, T Kutz, N Lashley-Colthirst, S Li, H Liu, J Mammei, P Markowitz, R E McClellan, F Meddi, D Meekins, R Michaels, M Mihovilovič, A Moyer, D Nguyen, M Nycz, V Owen, C Palatchi, S Park, T Petkovic, S Premathilake, P E Reimer, J Reinhold, S Riordan, V Rodriguez, C Samanta, S N Santiesteban, B Sawatzky, S Širca, K Slifer, T Su, Y Tian, Y Toyama, K Uehara, G M Urciuoli, D Votaw, J Williamson, B Wojtsekhowski, S A Wood, B Yale, Z Ye, J Zhang, X Zheng

Progress of Theoretical and Experimental Physics, Volume 2022, Issue 1, January 2022, 013D01, https://doi.org/10.1093/ptep/ptab158

Published: 06 December 2021 Article history v

https://doi.org/10.1093/ptep/ptab158 (see also here)

PHYSICAL REVIEW C

covering nuclear physics

Letter

Spectroscopic study of a possible Λnn resonance and a pair of ΣNN states using the $(e, e'K^+)$ reaction with a tritium target

B. Pandey¹, L. Tang ^{11,2,*}, T. Gogami^{3,4}, K. N. Suzuki⁴, K. Itabashi³, S. Nagao³, K.
Okuyama³, S. N. Nakamura³, D. Abrams⁵, I. R. Afnan⁶, T. Akiyama³, D. Androic⁷, K. Aniol⁸, T. Averett⁹, C. Ayerbe Gayoso⁹, J. Bane¹⁰, S. Barcus⁹, J. Barrow¹⁰, V. Bellini¹¹, H. Bhatt¹², D. Bhetuwal¹², D. Biswas¹, A. Camsonne², J. Castellanos¹³, J-P. Chen², J. Chen⁹, S.
Covrig², D. Chrisman^{14,15}, R. Cruz-Torres¹⁶, R. Das¹⁷, E. Fuchey¹⁸, C. Gal⁵, B. F. Gibson¹⁹, K. Gnanvo⁵, F. Garibaldi^{11,20}, T. Gautam¹, J. Gomez², P. Gueye¹, T. J. Hague²¹, O.
Hansen², W. Henry², F. Hauenstein²², D. W. Higinbotham², C. Hyde²², M. Kaneta³, C.
Keppel², T. Kutz¹⁷, N. Lashley-Colthirst¹, S. Li^{23,24}, H. Liu²⁵, J. Mammei²⁶, P. Markowitz¹³, R. E. McClellan², F. Meddi¹¹, D. Meekins², R. Michaels², M. Mihovilovič^{27,28,29}, A. Moyer³⁰, D. Nguyen^{16,31}, M. Nycz²¹, V. Owen⁹, C. Palatchi⁵, S. Park¹⁷, T. Petkovic⁷, S.
Premathilake⁵, P. E. Reimer³², J. Reinhold¹³, S. Riordan³², V. Rodriguez³³, C. Samanta³⁴, S. N. Santiesteban²³, B. Sawatzky², S. Širca^{27,28}, K. Slifer²³, T. Su²¹, Y. Tian³⁵, Y. Toyama³, K. Uehara³, G. M. Urciuoli¹¹, D. Votaw^{14,15}, J. Williamson³⁶, B. Wojtsekhowski², S. Wood², B. Yale²³, Z. Ye³², J. Zhang⁵, and X. Zheng⁵ (Hall A Collaboration)

https://doi.org/10.1103/PhysRevC.105.L051001

$nn\Lambda \begin{pmatrix} 3\\\Lambda \end{pmatrix}$ measurement at GSI

C. Rappold et al., PRC 88, 041001(R) (2013)

Three-body system with Λ

0.13 MeV (emulsion)

Can the $nn\Lambda$ be bound?

E. Hiyama, S. Ohnishi, B.F. Gibson, and Th. A. Rijken, Physical Review C 89, 061302(R) (2014).

AV8 *NN* + NSC97f *YN* potentials

(a)
$${}^{3}V_{\Lambda N-\Sigma N}^{T} \times 1.0$$

(b) ${}^{3}V_{\Lambda N-\Sigma N}^{T} \times 1.1$
(c) ${}^{3}V_{\Lambda N-\Sigma N}^{T} \times 1.2$

Tensor component of the $\Lambda N-\Sigma N$ coupling was varied. $\rightarrow No$ solution was found to make the $nn\Lambda$ bound maintaining the consistency with the ${}^{3}_{\Lambda}H({}^{4}_{\Lambda}H, {}^{4}_{\Lambda}He)$ data.

M. Schäfer et al., PRC 105, 015202 (2022)

6/19

Resonant nnA state

nn∧

- Resonant state may exist
- ✓ Energy + width \rightarrow n∧ Interaction
- ✓ Strongly related to $B_{\Lambda}(^{3}_{\Lambda}H)$ → E12-19-002 (HKS)

(e,e'K⁺) reaction spectroscopy

Missing-mass measurement at JLab → Sensitive to both bound and resonant states !!

c.f.) Invariant mass spectroscopy is sensitive to only bound state

Experimental setup at Hall A

ANALYSES

Analyses by Ph.D. Students \rightarrow 3 out of 5 earned Ph.D.

Angle calibration by using sieve slits

The 4th order polynomial

Sieve slit pattern (RHRS)

Hadrons

Energy calibration by Λ and Σ

K. Okuyama et al., EPJ Web. Conf. 271, 02003 (2022)

- Calibration with well known masses
 - Geant4 simulation is consistent with data

13/19

H₂ in T₂ target

A few % of H_2 compared to T_2

B. Pandey et al., Phys. Rev. C 105, L051001 (2022)

14/19

Binding energy: $B_{\Lambda} = (2M_n + M_{\Lambda}) - M_x$

No significant peaks: YNN But, there is excess.

K.N. Suzuki et al., <u>PTEP 2022</u>, 1, 013D01 (2022)
 TG et al., <u>WPJ Web Conf. 271</u>, 02002 (2022)

15

Fit by unbinned max. likelihood

(*1) H. Kamada, K. Miyagawa, and M. Yamaguchi, EPJ Web Conf. 113, 07004 (2016).
(*2) V. B. Belyaev, S. A. Rakityansky, and W. Sandhas, Nucl. Phys. A 803, 210–226 (2008).

Final state interaction (An int.) K. Itabashi e al., <u>WPJ Web Conf. 271, 02006 (2022)</u>

QF distribution analysis $\rightarrow \Lambda$ -n interaction

Influence factor due to FSI

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm FSI} = {\rm I}(\vec{k}_{\Lambda n}) \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/oFSI}$$

I(k) depends on

- scattering length
- effective range

Figure from K. Itabashi (KEK)

17/19

$p(\gamma^*, p)\eta'$ reaction cross section

e

Coincidence time (ns)

This channel is being analyzed by T. Akiyama (Tohoku Univ.)

SUMMARY

nnA search experiment (E12-17-003, 2018)

- > The existence of $nn\Lambda$ bound state is a deep mystery
- Resonant state may exist (theory)
- \rightarrow ³H(e,e'K⁺)nn Λ @ Hall A
 - > Sensitive to both bound and resonant states \rightarrow very unique

Results and on-going analyses

- 1. $nn\Lambda$; no prominent peak was observed. But, there is excess from background.
 - 1. Production cross section [K.N. Suzuki et al., PTEP 2022, 1, 013D01 (2022)]
 - 2. Peak search with a count-base spectrum [B. Pandey et al., Phys. Rev. C 105, L051001 (2022)]
 - 3. nΛ FSI from the QF shape [K. Itabashi e al., <u>WPJ Web Conf. 271, 02006 (2022)</u>]
- 2. Others
 - 1. Λ / Σ^0 electro-production [K. Okuyama et al., EPJ Web. Conf. 271, 02003 (2022)]
 - 2. η' electro-production [link to hypnucl. collab. meeting 2022]

THANK YOU FOR YOUR ATTENTION

Hypernuclear workshop 2023 on March 3rd @JLab ← will be announced soon

Response function \otimes BW

Response function (RF) ✓ Geant4 simulation

2. Signal function✓ RF convoluted by Breit Wigner

Cross section spectrum

Fit result (typical cases)

Kamada (2016): YN int. = Nijmegen89

Belyaev (2008): YN int. = Minesota

 $\left(\frac{d\sigma}{d\Omega_K}\right)_{\text{Fit B}} = \mathbf{18.1} \pm 6.8 \text{ (stat.)}_{-2.9}^{+4.2} \text{ (sys.)}$ **2.7 \sigma (only stat.)**

1-D SCAN

Fig. 11. The differential cross-section as a function of $-B_{\Lambda}$ (MeV). Spectral fits were done by assuming $(-B_{\Lambda}, \Gamma) = (0.25, 0.8)$ MeV and (0.55, 4.7) MeV respectively, which are predictions adopted from Refs. [8,12]. Each panel shows the differential cross-section of exceeded events over the assumed QF distribution as a function of an assumed peak center.

Upper limit at 90% C.L. (2-D scan)

Upper limit $x_{U.L.}$:

 $\frac{\int_{0}^{x_{U.L.}^{\text{stat.}}} g(x) dx}{\int_{0}^{\infty} g(x) dx} = 90\%$ where, g(x) is a Gaus. \clubsuit $x_{U.L.} = x_{U.L.}^{\text{stat.}} + sys. err.$

Theoretical calculations to be compared with the results are awaited !!