

Deeply Virtual Compton and π^0 Electroproduction

Charles Hyde For the E12-06-114, Collaboration F. Georges et al., Phys.Rev.Lett. **128** (2022) #25, 252002 M. Dlamini et al., Phys.Rev.Lett. **127** (2021) #15, 152301

Hall A DVCS Experiment at 11 GeV: 2014-2016

- H(e,e'γ)p & H(e,e'π⁰)p
- Cryogenic H₂ target
- Electron in HRS-L Spectrometer
 - Replace Q1 in middle of experiment
- PbF₂ calorimeter for gamma-rays
 - Cherenkov only, fast signals for pileup rejection.
 - 1 GHz Digitizer
- Exclusivity by missing mass
 - H(e,e'γ)Χ
 - H(e,e'γγ)X

Kinematics and Beamtime (proposed)

JLab Hall A DVCS, Actual Physics Run: 2014-2016

Setting	Kin-36-1	Kin-36-2	Kin-36-3	Kin-48-1	Kin-48-2	Kin-48-3	Kin-48-4	Kin-60-1	Kin-60-3	
x_B		0.36			0.	48		0.60		
$E_b \; ({\rm GeV})$	7.38	8.52	10.59	4.49	8.85	8.85	10.99	8.52	10.59	
$Q^2 \; ({ m GeV}^2)$	3.20	3.60	4.47	2.70	4.37	5.33	6.90	5.54	8.40	
E_{γ} (GeV)	4.7	5.2	6.5	2.8	4.7	5.7	7.5	4.6	7.1	
$-t_{min} \; (\mathrm{GeV}^2)$	0.16	0.17	0.17	0.32	0.34	0.35	0.36	0.66	0.70	
$\int Q dt$ (C)	1.2	1.7	1.3	2.2	2.2	3.7	5.7	6.4	18.5	
# data bins		672			91	480				

E12-06-114, 50 "PAC days"

"Scaling" Predictions of Deep Virtual Exclusive Scattering

- The general $\gamma^* p \rightarrow \gamma p$ amplitude has 12 complex helicity amplitudes
- At leading-twist there are just to just 4 complex helicity conserving amplitudes
- QCD factorization implies Q²-dependence follows combination of DGLAP & ERBL evolution in ln(Q²)
- DVCS should be dominated by "d $\sigma_{\rm T}$ "
- Deep $\pi^{\rm 0}$ should be dominated by "d $\sigma_{\rm L}$ "

Longitudinal & Transverse Momentum Coordinates

- DIS defines a unique light-cone direction from $q^{\mu} \& P^{\mu}$
- DVCS coordinate system is ambiguous up to order t/Q^2
- Light-cone from
 - q^μ & P^μ
 - (q+q')^μ & (P+P')^μ
 - q^µ & q'^µ

- DIS Symmetrized
- V. Braun *et al.*

Deep Exclusive π^0 Production

- Co-linear factorization proven for $\sigma_{\rm L}$ (chiral-even GPDs)
- Modified factorization approach (model-dependent) for $\sigma_{\rm T}$ (chiral-odd/transversity GPDs)

$$\frac{d^4\sigma}{dQ^2dx_Bdtd\phi} = \frac{1}{2\pi}\Gamma_{\gamma}(Q^2, x_B, E) \left[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon \frac{d\sigma_{TT}}{dt}\cos(2\phi) + h\sqrt{2\epsilon(1-\epsilon)}\frac{d\sigma_{TL'}}{dt}\sin(\phi)\right]$$

7

Deep Virtual π^0 Results

- Previous 6 GeV data
 - Hall A Rosenbluth-separation clearly identified $d\sigma_T >> d\sigma_L$
 - D(e,e'π⁰)np: Mazouz et al *Phys.Rev.Lett.* 118 (2017) 22, 222002
 - H(e,e'π⁰)p: Defurne et al., *Phys.Rev.Lett.* 117 (2016) 26, 262001
 - Similar conclusions from CLAS data, including both π^0 , η (but without Rosenbluth separations)
- Dominance of Transversity GPDs⊗[Twist-3 pion DA]
 - Amplitude induced by strong Chiral Symmetry Breaking
 - Ahmad, Goldstein, Liuti, Phys.Rev.D 79 (2009) 054014
 - Goloskokov, Kroll, Eur.Phys.J.A 47 (2011)

12 GeV Hall A H(e,e' π^0)p: cross sections

0.5

0.2

0.1

0.3

0.4

ť (GeV²)

0.6

0.7

• M. Dlamini et al., PRL **127** (2021) 152301

 $\frac{d\sigma_U}{dt}$ (nb/GeV²)

 $\frac{d\sigma_U}{dt}$ (nb/GeV²)

 $\frac{d\sigma_U}{dt}$ (nb/GeV²)

10²

10³

10²

10²

0

• Evidence for σ_{T} dominance Transversity GPDs

> The modified factorization approach of the GK model (dotted) lines) reproduce fairly well σ_{TT} .

0.25

- \succ GK model underestimate σ_{TI} and $\sigma_{TI'}$
- \blacktriangleright Reasonable agreement in $\sigma_{\mu} = \sigma_{\tau} + \varepsilon \sigma_{\mu}$

Exclusive π^0 Electroproduction: Q²-Dependence

• QCD asymptotic limits

- $d\sigma_L/dt \propto Q^{-6}$ $d\sigma_T/dt \propto Q^{-8}$
- Data: $d\sigma_U = d\sigma_T + \varepsilon d\sigma_L \approx (Q^2)^{-3}$
- Goloskokov Kroll model
 - $d\sigma_{U} = d\sigma_{T} + \varepsilon d\sigma_{L} \approx Q^{-7}$
 - GK underestimating Long. Amplitude?
- NPS experiment coming this summer to Hall C
 - First 12 GeV π^0 Rosenbluth separations!

Example E12-06-114 DVCS Cross Sections

 $x_B=0.48, Q^2=5.4 \text{ GeV}^2, t=-0.33 \text{ GeV}^2;$ $x_{B}=0.36, Q^{2}=3.7 GeV^{2}, t=-0.33 GeV^{2};$ $x_{B}=0.6$, $Q^{2}=8.4 \text{ GeV}^{2}$, $t=-0.91 \text{ GeV}^{2}$ Q^2 =3.67 GeV² t=-0.33 GeV² Q^2 =5.36 GeV² t=-0.51 GeV² Q^2 =8.45 GeV² t=-0.91 GeV² $d^4\sigma^+ + d^4\sigma^-$ (pb/GeV⁴) $\frac{d^4\sigma^+ + d^4\sigma}{2}$ (pb/GeV⁴ (pb/GeV⁴ Total fit DVCS² Interference 0.3 BH d⁴σ, KM15 d⁴σ⁺ 0. 300 350 Ø (deg)) 350 ∉ (deg) 300 350 Ø (deg) 50 250 50 250 50 300 100 50 200 100 150 200 100 $\frac{d^4\sigma}{d^2\sigma}$ (pb/GeV⁴) (pb/GeV⁴) Q²=3.67 GeV² t=-0.33 GeV² Q^2 =5.36 GeV² t=-0.51 GeV² Q^2 =8.45 GeV² t=-0.91 GeV² 0 d⁴σ, 0.5F d⁴σ⁺ $d^4 \sigma^+$ -0.05-1.5 50 250 300 350 50 200 250 300 350 100 200 250 300 50 100 150 200 150 50 100 Φ (deg) Φ (deg) Φ (deg)

Braun, et al formalism

- Includes kinematic higher twist
- 12 complex CFFs
- $H_{\lambda,\lambda'}, \widetilde{H}_{\lambda,\lambda'}, E_{\lambda,\lambda'}, \widetilde{E}_{\lambda,\lambda'}$ • $(\lambda,\lambda') = (+,+), (0,+), (-,+)$
- Each kinematic coefficient has different *E_e*, *Q²*, *x_B*, *t* -dependence
- Our analysis:
 - At fixed (x_B,t) global fit to all 12 CFFs (neglecting QCD evolution)

CFF Extraction

- *x_B*-dependence of *t*-averaged results for Re & Im parts of all four helicity-conserving Compton Form Factors
- Helicity flip amplitudes included in fit, statistically consistent with zero, but necessary for realistic uncertainties.
- Im[E₊₊] and Im[Ẽ₊₊] arbitrarily 0 in Kumericki Mueller KM15 model

Conclusion and Outlook

- Realistic DVCS formalism essential for precision extraction of CFFs.
- 2023: Neutral Particle Spectrometer (NPS) DVCS run New PbWO₄ calorimeter: improved M_{χ}^2 resolution
 - Sweep magnet to maintain low background in calorimeter
 - Higher momentum range of Hall C HMS and smaller angles for PbWO₄ allows access to full range of 12 GeV kinematics
- Multiple (2 or 3) incident beam energies at fixed (Q², x_B): E12-13-010
 - L/T separation of Deep Neutral Pion Production
 - Improved precision on extraction of Re/Im parts of CFF.
- Neutron DVCS/ π^0 E12-22-006, approved by PAC-50, included in 2023-2024 run !
 - u/d-flavor separations

Thank you, and more slides

_///	x_B 0.2					0.36						0.5			0.6			
_////	$Q^2 ({ m GeV})^2$	2.0 3.0 6.6 8.8 11		3.0	3.0		4	4.0 5.5		3.4		4.8	5.1			6.0		
	$E_b \; (\text{GeV})$			1	6.6	8.8	11	8.8	1	1	8.8	1	1	6.6	8.8 11		1	
NIPS	$k' \; ({ m GeV})$	1.3	3.5	5.7	3.0	2.2	4.4	6.6	2.9	5.1	2.9	5.2	7.4	5.9	2.1	4.3	6.5	5.7
1113	$ heta_{\mathrm{Calo}}\left(\mathrm{deg} ight)$	6.3	9.2	10.6	6.3	11.7	14.7	16.2	10.3	12.4	7.9	20.2	21.7	16.6	13.8	17.8	19.8	17.2
DV/CS	D_{Calo} (m)	6 4		6	3			4	3	4	3							
	$I_{\rm beam}~(\mu {\rm A})$	11	11 5 50		11	28			50	28	50	28						
$/\pi^0$	$\sigma_{M_X^2}({ m GeV^2})$	0.17 0.22 0.04		0.22	0.13 0.12			0.	15	0.19	0.09 0.11		0.09					
	$-t_{min} \; (\text{GeV}^2)$			0.16		0.17			0.37		0.39	0.65		0.67				
	$-t_{min}/(2\sigma_{M_X^2})$	0.1			0.6			0.55		0.4	2		1.7	3.6		3.7		
	$LH_2 Days$	1	1	1	1	1	2	1	1	3	5	3	2	5	5	1	5	10
	LD_2 Days					1	2	1	1	3	5	3	2	5	5	1	5	10
						This Proposal: 44 days on LD_2												

TABLE I: Approved DVCS kinematics with NPS and an LH2 target (E12-13-010). The incident and scattered beam energies are k and k', respectively. The calorimeter is centered at the angle θ_{Calo} , which is set equal to the nominal virtual-photon direction. The front face of the calorimeter is at a distance D_{Calo} from the center of the target. The values of $-t_{min}/(2\sigma_{M_X^2})$ represent the minimal separation, in units of M_X^2 resolution, between the neutron and coherent deuteron DVCS signals in a M_X^2 spectrum. This value was about 0.4 in the previous E08-025 experiment.

26 Jan 2023

26 Jan 2023

Hall A Winter Meeting