The Search for Exotic Matter in the Light-Meson Sector

Boris Grube

Thomas Jefferson National Accelerator Facility

4th Workshop on Future Directions in Spectroscopy Analysis (FDSA2022) 15. November 2022

Jefferson Lab, Newport News, VA

- $|q\bar{q}\rangle$ states, with q = u, d, or s
- Organized in SU(3)_{flavor} nonets

- Total intrinsic spin $S = \vec{s}_1 \oplus \vec{s}_2$; S = 0 or 1
- Relative orbital angular momentum L
 and S
 couple to meson spin l
 = L
 ⊕ S
- Parity: $P = (-1)^{L+1}$
- Charge conjugation: $C = (-1)^{L+S}$
- Forbidden J^{PC} combinations: 0⁻⁻, even⁺⁻, odd⁻⁻

Jefferson Lab

- $|q\bar{q}\rangle$ states, with q = u, d, or s
- Organized in SU(3)_{flavor} nonets

- Total intrinsic spin $\vec{S} = \vec{s}_1 \oplus \vec{s}_2$; S = 0 or 1
- Relative orbital angular momentum \vec{L} and \vec{S} couple to meson spin $\vec{J} = \vec{L} \oplus \vec{S}$
- Parity: $P = (-1)^{L+1}$
- Charge conjugation: $C = (-1)^{L+S}$
- Forbidden J^{PC} combinations: 0⁻⁻, even⁺⁻, odd⁻⁺

Jefferson Lab

- $|q\bar{q}\rangle$ states, with q = u, d, or s
- Organized in SU(3)_{flavor} nonets

- Total intrinsic spin $\vec{S} = \vec{s}_1 \oplus \vec{s}_2$; S = 0 or 1
- Relative orbital angular momentum \vec{L} and \vec{S} couple to meson spin $\vec{J} = \vec{L} \oplus \vec{S}$
- Parity: $P = (-1)^{L+1}$
- Charge conjugation: $C = (-1)^{L+S}$
- Forbidden *J^{PC}* combinations: 0⁻⁻, even⁺⁻, odd⁻⁺

- $|q\bar{q}\rangle$ states, with q = u, d, or s
- Organized in SU(3)_{flavor} nonets

- Total intrinsic spin $\vec{S} = \vec{s}_1 \oplus \vec{s}_2$; S = 0 or 1
- Relative orbital angular momentum \vec{L} and \vec{S} couple to meson spin $\vec{J} = \vec{L} \oplus \vec{S}$
- Parity: $P = (-1)^{L+1}$
- Charge conjugation: $C = (-1)^{L+S}$
- Forbidden J^{PC} combinations: 0⁻⁻, even⁺⁻, odd⁻⁺

Light-Meson Frontier

• Rich spectrum

- Many states in mass region $\gtrsim 2 \, {\rm GeV}/c^2$ need confirmation
- Many wide states
 - Identification requires partial-wave analysis (PWA)
 - States with same *J^{PC}* overlap and mix

Light-Meson Frontier

• Rich spectrum

- Many states in mass region $\gtrsim 2 \, {\rm GeV}/c^2$ need confirmation
- Many wide states
 - Identification requires partial-wave analysis (PWA)
 - States with same *J^{PC}* overlap and mix

Light-Meson Frontier

[Courtesy K. Götzen, GSI]

• Rich spectrum

- Many states in mass region $\gtrsim 2 \, {\rm GeV}/c^2$ need confirmation
- Many wide states
 - Identification requires partial-wave analysis (PWA)
 - States with same J^{PC} overlap and mix

Goal: precision measurement

- Confirm higher excitations
- Complete SU(3)_{flavor} nonets
- Search for exotic states

Light-Meson Frontier

[Courtesy K. Götzen, GSI]

• Rich spectrum

- Many states in mass region $\gtrsim 2 \, {\rm GeV}/c^2$ need confirmation
- Many wide states
 - Identification requires partial-wave analysis (PWA)
 - States with same J^{PC} overlap and mix

Goal: precision measurement

- Input for theory and phenomenology
- Understand QCD at low energies, e.g. nature of confinement

Light-Meson Frontier

• Rich spectrum

- Many states in mass region $\gtrsim 2 \, {\rm GeV}/c^2$ need confirmation
- Many wide states
 - Identification requires partial-wave analysis (PWA)
 - States with same J^{PC} overlap and mix

Analyses driven by

- High-quality data
- Advancements in analysis techniques
- More rigorous theoretical PWA models

Beyond the Constituent Quark Model

Exotic Mesons

Quarkonia |qā> |qāg> Hybrids $|gg\rangle$ Glueballs + $|q^2\bar{q}^2\rangle$ Multiquarks

QCD permits additional color-singlet mesonic configurations

Physical mesons

- Linear superpositions of all allowed basis states
- Configuration mixing
- Disentanglement of contributions difficult
 - Detailed and accurate information about couplings to production and decay channels required

Manifestly exotic mesons

- Quantum numbers forbidden for $|q\bar{q}
 angle$ states
- Flavor-exotics: flavor quantum numbers
- Spin-exotics: *J*^{PC} quantum numbers

Beyond the Constituent Quark Model

Exotic Mesons

QCD permits additional color-singlet mesonic configurations

Physical mesons

- Linear superpositions of *all* allowed basis states
- Configuration mixing
- Disentanglement of contributions difficult
 - Detailed and accurate information about couplings to production and decay channels required

Manifestly exotic mesons

- Quantum numbers forbidden for $|q\bar{q}\rangle$ states
- Flavor-exotics: flavor quantum numbers
- Spin-exotics: *J*^{PC} quantum numbers

Beyond the Constituent Quark Model

Exotic Mesons

Ouarkonia **Hybrids** |qq̄g> $|gg\rangle$ Glueballs $|q^2 \bar{q}^2\rangle$ Multiquarks

QCD permits additional color-singlet mesonic configurations

Physical mesons

- Linear superpositions of *all* allowed basis states
- Configuration mixing
- Disentanglement of contributions difficult
 - Detailed and accurate information about couplings to production and decay channels required

Manifestly exotic mesons

- Quantum numbers forbidden for $|q\bar{q}\rangle$ states
- Flavor-exotics: flavor quantum numbers
- Spin-exotics: *J*^{PC} quantum numbers

Heavy-Quark Sector: Clear Evidence for Four-Quark States

Heavy-Quark Sector: Clear Evidence for Four-Quark States

Z_c, Z_{cs}, Z_b

- Charged $|c\bar{c}\rangle$ and $|b\bar{b}\rangle$ -like states
- E.g. $Z_c^{\pm}(3900)$ $\rightarrow J/\psi + \pi^{\pm}$

T_{cc}

- Doubly charmed mesons
- $T_{cc}(3875)^+$ $\rightarrow D^0 + D^0 + \pi^+$

$\psi\psi$

- States with 4 heavy quarks
- $X(6900) \rightarrow J/\psi + J/\psi$

Heavy-Quark Sector: Clear Evidence for Four-Quark States

Z_c, Z_{cs}, Z_b

- Charged $|c\bar{c}\rangle$ and $|b\bar{b}\rangle$ -like states
- E.g. $Z_c^{\pm}(3900)$ $\rightarrow J/\psi + \pi^{\pm}$

T_{cc}

- Doubly charmed mesons
- $T_{cc}(3875)^+$ $\rightarrow D^0 + D^0 + \pi^+$

$T_{\psi\psi}$

- States with 4 heavy quarks
- $X(6900) \rightarrow J/\psi + J/\psi$

Heavy-Quark Sector: Clear Evidence for Four-Quark States

Z_c, Z_{cs}, Z_b

- Charged $|c\bar{c}\rangle$ and $|b\bar{b}\rangle$ -like states
- E.g. $Z_c^{\pm}(3900)$ $\rightarrow J/\psi + \pi^{\pm}$

T_{cc}

- Doubly charmed mesons
- $T_{cc}(3875)^+$ $\rightarrow D^0 + D^0 + \pi^+$

$T_{\psi\psi}$

- States with 4 heavy quarks
- $X(6900) \rightarrow J/\psi + J/\psi$

Light-Quark Sector: Experimental Situation Less Clear

Exotic light mesons with ordinary quantum numbers

- Assignment of some SU(3)_{flavor} $|q\bar{q}
 angle$ nonets difficult
 - E.g. lightest isoscalar $J^{PC} = 0^{++}$ nonet $a_0(980)$, $K_0^*(700)$, $f_0(500)$, $f_0(980)$ could be four-quark states
 - Evidence for supernumerary states w.r.t. quark-model expectation, e.g. excited *f*₀ states ⇒ glueball candidates
- Claims model-dependent; non- $q\bar{q}$ nature difficult to establish

- Finding them would be unambiguous proof for existence of non-qq states
- So far no flavor-exotic signals
- Efforts concentrate on spin-exotic mesons

Light-Quark Sector: Experimental Situation Less Clear

Exotic light mesons with ordinary quantum numbers

- Assignment of some SU(3)_{flavor} $|q\bar{q}
 angle$ nonets difficult
 - E.g. lightest isoscalar $J^{PC} = 0^{++}$ nonet $a_0(980)$, $K_0^*(700)$, $f_0(500)$, $f_0(980)$ could be four-quark states
 - Evidence for supernumerary states w.r.t. quark-model expectation, e.g. excited *f*₀ states ⇒ glueball candidates
- Claims model-dependent; non- $q\bar{q}$ nature difficult to establish

- Finding them would be unambiguous proof for existence of non-qq states
- So far no flavor-exotic signals
- Efforts concentrate on spin-exotic mesons

Light-Quark Sector: Experimental Situation Less Clear

Exotic light mesons with ordinary quantum numbers

- Assignment of some SU(3)_{flavor} $|q\bar{q}
 angle$ nonets difficult
 - E.g. lightest isoscalar $J^{PC} = 0^{++}$ nonet $a_0(980)$, $K_0^*(700)$, $f_0(500)$, $f_0(980)$ could be four-quark states
 - Evidence for supernumerary states w.r.t. quark-model expectation, e.g. excited *f*₀ states ⇒ glueball candidates
- Claims model-dependent; non- $q\bar{q}$ nature difficult to establish

- Finding them would be unambiguous proof for existence of non-qq states
- So far no flavor-exotic signals
- Efforts concentrate on spin-exotic mesons

Light-Quark Sector: Experimental Situation Less Clear

Exotic light mesons with ordinary quantum numbers

- Assignment of some SU(3)_{flavor} $|q\bar{q}
 angle$ nonets difficult
 - E.g. lightest isoscalar $J^{PC} = 0^{++}$ nonet $a_0(980)$, $K_0^*(700)$, $f_0(500)$, $f_0(980)$ could be four-quark states
 - Evidence for supernumerary states w.r.t. quark-model expectation, e.g. excited *f*₀ states ⇒ glueball candidates
- Claims model-dependent; non- $q\bar{q}$ nature difficult to establish

- Finding them would be unambiguous proof for existence of non-qq states
- So far no flavor-exotic signals
- Efforts concentrate on spin-exotic mesons

- High towers of excited states similar to quark model
- Additional hybrid-
- Lightest hybrid state
- First prediction for

- High towers of excited states similar to quark model
- Additional hybridmeson supermultiplet
- Lightest hybrid state
- First prediction for

- High towers of excited states similar to quark model
- Additional hybridmeson supermultiplet
- Lightest hybrid state is isovector with exotic $I^{PC} = 1^{-+}$
- First prediction for

- High towers of excited states similar to quark model
- Additional hybridmeson supermultiplet
- Lightest hybrid state is isovector with exotic $I^{PC} = 1^{-+}$
- First prediction for partial widths of 1^{-+} state Woss et al. [HadSpec], PRD 103 (2021) 054502

Spin-Exotic Light Mesons

Experimental Candidates

• Nearly 35 years ago: first observation of a spin-exotic π_1 state with $I^G(J^{PC}) = 1^-(1^{-+})$ in $\pi^- p \to \pi^0 \eta n$ at 100 GeV/c by GAMS Alde *et al.* [GAMS], PLB **205** (1988) 397

- Since then many experiments reported signals
- Seemingly large body of evidence from
 - Various production mechanisms
 - Several decay channels
- 3 states listed by PDG, all with $I^G(J^{PC}) = 1^-(1^{-+})$:
 - $\pi_1(1400)$ established: $m_0 = 1354 \pm 25 \,\text{MeV}/c^2$, $\Gamma_0 = 330 \pm 35 \,\text{MeV}/c^2$
 - $\pi_1(1600)$ established: $m_0 = 1661 \, {}^{+15}_{-11} \, {\rm MeV}/c^2$, $\Gamma_0 = 240 \pm 50 \, {\rm MeV}/c^2$
 - $\pi_1(2015)$ needs confirmation

• But:

- Interpretation of many signals controversial
- Some experimental results are puzzling or seem contradictory

Interpretation of many signals controversial Some experimental results are puzzling or seem contradictory

- Nearly 35 years ago: first observation of a spin-exotic π_1 state with $I^G(I^{PC}) = 1^-(1^{-+})$ in $\pi^- p \rightarrow \pi^0 \eta n$ at 100 GeV/c by GAMS Alde et al. [GAMS], PLB 205 (1988) 397
- Since then many experiments reported signals
- Seemingly large body of evidence from
 - Various production mechanisms
 - Several decay channels

Spin-Exotic Light Mesons

Experimental Candidates

- 3 states listed by PDG, all with $I^G(I^{PC}) = 1^-(1^{-+})$:
 - $\pi_1(1400)$ established: $m_0 = 1354 \pm 25 \,\text{MeV}/c^2$, $\Gamma_0 = 330 \pm 35 \,\text{MeV}/c^2$
 - $\pi_1(1600)$ established: $m_0 = 1661^{+15}_{-11} \text{MeV}/c^2$, $\Gamma_0 = 240 \pm 50 \text{ MeV}/c^2$
 - $\pi_1(2015)$ needs confirmation

• But:

- Nearly 35 years ago: first observation of a spin-exotic π_1 state with $I^G(J^{PC}) = 1^-(1^{-+})$ in $\pi^- p \to \pi^0 \eta n$ at 100 GeV/c by GAMS Alde *et al.* [GAMS], PLB **205** (1988) 397
- Since then many experiments reported signals
- Seemingly large body of evidence from
 - Various production mechanisms
 - Several decay channels
- 3 states listed by PDG, all with $I^G(J^{PC}) = 1^-(1^{-+})$:
 - $\pi_1(1400)$ established: $m_0 = 1354 \pm 25 \,\text{MeV}/c^2$, $\Gamma_0 = 330 \pm 35 \,\text{MeV}/c^2$
 - $\pi_1(1600)$ established: $m_0 = 1661 {}^{+15}_{-11} \text{MeV}/c^2$, $\Gamma_0 = 240 \pm 50 \text{ MeV}/c^2$
 - $\pi_1(2015)$ needs confirmation

• But:

- Interpretation of many signals controversial
- Some experimental results are puzzling or seem contradictory

Spin-Exotic Light Mesons

Production Mechanisms

- So far, π_1 signals were observed in 3 production mechanisms:
- π scattering off nucleon or nuclear targets • π_{beam} • π_{b

Excited mesons appear as short-lived interm<u>ediate states X</u>

- Decay into multi-body hadronic final state
- Apply partial-wave analysis to disentangle interfering contributions of resonances
 - Determine mass, width, and quantum numbers of resonances

Spin-Exotic Light Mesons

Production Mechanisms

- So far, π_1 signals were observed in 3 production mechanisms:
- π scattering off nucleon or nuclear targets
- 2 \overline{p} -N annihilation at rest or in flight

Excited mesons appear as short-lived intermediate states X

- Decay into multi-body hadronic final state
- Apply partial-wave analysis to disentangle interfering contributions of resonances
 - Determine mass, width, and quantum numbers of resonances

Spin-Exotic Light Mesons Production Mechanisms So far, π₁ signals were observed in 3 production mechanisms:

\$\pi\$ \$\pi\$ scattering off nucleon or nuclear targets
 \$\pi\$ \$\bar{p}\$-\$N annihilation at rest or in flight
 \$\pi\$ Heavy-meson decays or in flight
 \$\pi\$ Heavy-meson decays or in flight
 \$\pi\$ \$\p

Excited mesons appear as short-lived intermediate states λ

- Decay into multi-body hadronic final state
- Apply partial-wave analysis to disentangle interfering contributions of resonances
 - Determine mass, width, and quantum numbers of resonances

Spin-Exotic Light Mesons Deficition Mechanisms Production Mechanisms • Toomas Jefferson National Accelerator Facility • So far, π_1 signals were observed in 3 production mechanisms: • \bar{p} -N annihilation at rest or in flight • π scattering off nucleon or nuclear targets • \bar{p} -N annihilation at rest or in flight • $\pi_{\text{beam}} \times \chi \longrightarrow h_1^h$ • $\bar{p} - \chi \longrightarrow h_1^h$

Excited mesons appear as short-lived intermediate states X

• Decay into multi-body hadronic final state

Recoil

 \mathbb{P}, \mathbb{R}

Target

- Apply partial-wave analysis to disentangle interfering contributions of resonances
 - Determine mass, width, and quantum numbers of resonances

 h_{n+1}

Model Measured Intensity Distribution

Ansatz: Factorization of production and decay

• Kinematics of *n*-body final state defined by its mass m_n and multi-dimensional phase-space variables τ_n $\frac{dN(m_n, \tau_n)}{dN(m_n, \tau_n)} = \left| \frac{w_{\text{aves}}}{2} \right|^2$

$$\mathcal{I}(m_n, \tau_n) = \frac{\mathrm{d}N(m_n, \tau_n)}{\mathrm{d}m_n \; \mathrm{dLIPS}_n(m_n, \tau_n)} \propto \left| \sum_{i}^{\mathrm{narce}} \mathcal{T}_i(m_n) \, \Psi_i(m_n, \tau_n) \right|$$

• Simplest case: all amplitudes are fully coherent

- Decay amplitudes $\Psi_i(m_n, \tau_n)$
 - $\bullet ||Y_i(m_n, \tau_n)|^2$ describes τ_n distribution of partial wave *i* for given m_n
 - i defines all quantum numbers
 - $\Psi_i(m_n, \tau_n)$ calculable using spin formalism (usually helicity formalism).
- Partial-wave amplitudes $\mathcal{T}_i(m_n) \Longrightarrow$ interesting physics
 - Dalitz plot analysis: all $\mathcal{T}_i(m_n)$ are modeled in terms of resonances and $\mathcal{I}(m_n, au_n)$ is fit to data

Model Measured Intensity Distribution

Ansatz: Factorization of production and decay

• Kinematics of *n*-body final state defined by its mass m_n and multi-dimensional phase-space variables τ_n $dN(m_n, \tau_n) = \left| \frac{w_{\text{aves}}}{2} - \frac{1}{2} \right|^2$

$$\mathcal{I}(m_n, \tau_n) = \frac{\mathrm{d}N(m_n, \tau_n)}{\mathrm{d}m_n \; \mathrm{dLIPS}_n(m_n, \tau_n)} \propto \left| \sum_{i}^{\mathrm{MAGG}} \mathcal{T}_i(m_n) \, \Psi_i(m_n, \tau_n) \right|$$

- Simplest case: all amplitudes are fully coherent
- Decay amplitudes $\Psi_i(m_n, \tau_n)$
 - $|\Psi_i(m_n, \tau_n)|^2$ describes τ_n distribution of partial wave *i* for given m_n
 - *i* defines all quantum numbers
 - $\Psi_i(m_n, \tau_n)$ calculable using spin formalism (usually helicity formalism)
- Partial-wave amplitudes $\mathcal{T}_i(m_n) \Longrightarrow$ interesting physics
 - Dalitz plot analysis: all $T_i(m_n)$ are modeled in terms of resonances and $\mathcal{I}(m_n, \tau_n)$ is fit to data

Model Measured Intensity Distribution

Ansatz: Factorization of production and decay

• Kinematics of *n*-body final state defined by its mass m_n and multi-dimensional phase-space variables τ_n $dN(m_n, \tau_n) = \left| \frac{dN(m_n, \tau_n)}{dN(m_n, \tau_n)} \right|^2$

$$\mathcal{I}(m_n, \tau_n) = \frac{\mathrm{dN}(m_n, \tau_n)}{\mathrm{d}m_n \, \mathrm{dLIPS}_n(m_n, \tau_n)} \propto \Big| \sum_i \mathcal{T}_i(m_n) \, \Psi_i(m_n, \tau_n) \Big|$$

- Simplest case: all amplitudes are fully coherent
- Decay amplitudes $\Psi_i(m_n, \tau_n)$
 - $|\Psi_i(m_n, \tau_n)|^2$ describes τ_n distribution of partial wave *i* for given m_n
 - *i* defines all quantum numbers
 - $\Psi_i(m_n, \tau_n)$ calculable using spin formalism (usually helicity formalism)
- Partial-wave amplitudes $\mathcal{T}_i(m_n) \Longrightarrow$ interesting physics
 - Dalitz plot analysis: all $T_i(m_n)$ are modeled in terms of resonances and $\mathcal{I}(m_n, \tau_n)$ is fit to data

Model Measured Intensity Distribution

Ansatz: Factorization of production and decay

• Kinematics of *n*-body final state defined by its mass m_n and multi-dimensional phase-space variables τ_n $dN(m_n, \tau_n) = \left| \frac{dN(m_n, \tau_n)}{dN(m_n, \tau_n)} \right|^2$

$$\mathcal{I}(m_n, \tau_n) = \frac{\mathrm{dN}(m_n, \tau_n)}{\mathrm{d}m_n \, \mathrm{dLIPS}_n(m_n, \tau_n)} \propto \Big| \sum_i \mathcal{T}_i(m_n) \, \Psi_i(m_n, \tau_n) \Big|$$

- Simplest case: all amplitudes are fully coherent
- Decay amplitudes $\Psi_i(m_n, \tau_n)$
 - $|\Psi_i(m_n, \tau_n)|^2$ describes τ_n distribution of partial wave *i* for given m_n
 - *i* defines all quantum numbers
 - $\Psi_i(m_n, \tau_n)$ calculable using spin formalism (usually helicity formalism)
- Partial-wave amplitudes $\mathcal{T}_i(m_n) \Longrightarrow$ interesting physics
 - Dalitz plot analysis: all $T_i(m_n)$ are modeled in terms of resonances and $\mathcal{I}(m_n, \tau_n)$ is fit to data
Partial-Wave Analysis (PWA) Method

Model Measured Intensity Distribution

Ansatz: Factorization of production and decay

• Kinematics of *n*-body final state defined by its mass m_n and multi-dimensional phase-space variables τ_n $dN(m_n, \tau_n) = \left| \frac{dN(m_n, \tau_n)}{dN(m_n, \tau_n)} \right|^2$

$$\mathcal{I}(m_n, \tau_n) = \frac{\mathrm{dN}(m_n, \tau_n)}{\mathrm{d}m_n \; \mathrm{dLIPS}_n(m_n, \tau_n)} \propto \left| \sum_i \mathcal{T}_i(m_n) \, \Psi_i(m_n, \tau_n) \right|$$

- Simplest case: all amplitudes are fully coherent
- Decay amplitudes $\Psi_i(m_n, \tau_n)$
 - $|\Psi_i(m_n, \tau_n)|^2$ describes τ_n distribution of partial wave *i* for given m_n
 - *i* defines all quantum numbers
 - $\Psi_i(m_n, \tau_n)$ calculable using spin formalism (usually helicity formalism)
- Partial-wave amplitudes $\mathcal{T}_i(m_n) \Longrightarrow$ interesting physics
 - Scattering experiments use two-step approach:
 - Fit I(τ_n) in narrow m_n bins ⇒ extract m_n dependence of T_i no assumptions about resonance content of n-body system
 - 2 Resonance-model fit of $T_i(m_n)$ for selected subset of waves

Partial-Wave Analysis (PWA) Method

Model Measured Intensity Distribution

Ansatz: Factorization of production and decay

• Kinematics of *n*-body final state defined by its mass m_n and multi-dimensional phase-space variables τ_n $dN(m_n, \tau_n) = \left| \frac{dN(m_n, \tau_n)}{dN(m_n, \tau_n)} \right|^2$

$$\mathcal{I}(m_n, \tau_n) = \frac{\mathrm{dW}(m_n, \tau_n)}{\mathrm{d}m_n \, \mathrm{dLIPS}_n(m_n, \tau_n)} \propto \Big| \sum_i \mathcal{T}_i(m_n) \, \Psi_i(m_n, \tau_n)$$

- Simplest case: all amplitudes are fully coherent
- Decay amplitudes $\Psi_i(m_n, \tau_n)$
- Partial-wave amplitudes $\mathcal{T}_i(m_n) \Longrightarrow$ interesting physics

Common challenges of this approach

- Model selection: Which resonances/partial waves should be included in model?
- Isobar model: subsystems of *n*-body final state with n > 2 are dominated by resonances
 - Which isobar resonances to include? Which parametrizations to use? Which parameter values?

Example: $\pi^- p \rightarrow \eta \pi^0 n$ at 18 GeV/c

- Seen by BNL E852, Crystal Barrel, GAMS, KEK E179, and VES in
 - π scattering
 - \bar{p} -N annihilation

Puzzling properties of the $\pi_1(1400)$

- Observed nearly exclusively in $\eta\pi$ decay mode
- Too light compared to lattice QCD calculation and most model predictions
- Mass too close to $\pi_1(1600)$ for $\pi_1(1600)$ to be radial excitation of $\pi_1(1400)$

M(η π⁰) (GeV/c²)

 $\Delta \Phi (D_{\perp} - P_{\perp})$

1.6

BNL E852, PLB 657 (2007) 27

Example: $\pi^- p \rightarrow \eta \pi^0 n$ at 18 GeV/c

- Seen by BNL E852, Crystal Barrel, GAMS, KEK E179, and VES in
 - π scattering
 - \bar{p} -N annihilation

Puzzling properties of the $\pi_1(1400)$

- Observed nearly exclusively in $\eta\pi$ decay mode
- Too light compared to lattice QCD calculation and most model predictions
- Mass too close to $\pi_1(1600)$ for $\pi_1(1600)$ to be radial excitation of $\pi_1(1400)$

BNL E852, PLB 657 (2007) 27

- Seen by BNL E852, CLEO-c, COMPASS, Crystal Barrel, and VES in
 - π scattering, \bar{p} -N annihilation, and χ_{c1} decays
 - $\rho(770)\pi, \eta'\pi, b_1(1235)\pi$, and $f_1(1285)\pi$ decay modes

Puzzling properties of the $\pi_1(1600)$

- Not observed in $\eta\pi$
- π scattering: production via natural-parity exchange should dominate
 - Confirmed for $\pi_1(1600)$ in $\eta'\pi$ and $f_1(1285)\pi$

- Seen by BNL E852, CLEO-c, COMPASS, Crystal Barrel, and VES in
 - π scattering, \bar{p} -N annihilation, and χ_{c1} decays
 - $\rho(770)\pi,\eta'\pi,b_1(1235)\pi,$ and $f_1(1285)\pi$ decay modes

Puzzling properties of the $\pi_1(1600)$

- Not observed in $\eta\pi$
- π scattering: production via natural-parity exchange should dominate
 - Confirmed for $\pi_1(1600)$ in $\eta'\pi$ and $f_1(1285)\pi$
 - But in ρ(770)π and b₁(1235)π BNL E852 also sees unnatural-parity exchange production of π₁(1600)
 - Inconsistent: production of a resonance is independent of its decay

Example: $\pi^- p \rightarrow \eta' \pi^- p$ at 18 GeV/*c* P₁ - D₁ phase Events/(0.05 GeV/c²) 0 000 0 000 0 000 0 000 $|P_{\downarrow}|^2$ $|D_{\perp}|^2$ $a_2(1320)$ 12(1700) 1.5 1.5 20 25 2.5 20 $M(\eta'\pi)$ (GeV/c²)

BNL E852, PRL 86 (2001) 3977

- Seen by BNL E852, CLEO-c, COMPASS, Crystal Barrel, and VES in
 - π scattering, \bar{p} -N annihilation, and χ_{c1} decays
 - $\rho(770)\pi,\eta'\pi,b_1(1235)\pi,$ and $f_1(1285)\pi$ decay modes

Puzzling properties of the $\pi_1(1600)$

- Not observed in $\eta\pi$
- *π* scattering: production via natural-parity exchange should dominate
 - Confirmed for $\pi_1(1600)$ in $\eta^\prime\pi$ and $f_1(1285)\pi$
 - But in $\rho(770)\pi$ and $b_1(1235)\pi$ BNL E852 also sees unnatural-parity exchange production of $\pi_1(1600)$
 - Inconsistent: production of a resonance is independent of its decay

Example: $\pi^- p \rightarrow \eta' \pi^- p$ at 18 GeV/*c*

- Seen by BNL E852, CLEO-c, COMPASS, Crystal Barrel, and VES in
 - π scattering, \bar{p} -N annihilation, and χ_{c1} decays
 - $\rho(770)\pi, \eta'\pi, b_1(1235)\pi$, and $f_1(1285)\pi$ decay modes

Puzzling properties of the $\pi_1(1600)$

- Not observed in $\eta\pi$
- *π* scattering: production via natural-parity exchange should dominate
 - Confirmed for $\pi_1(1600)$ in $\eta'\pi$ and $f_1(1285)\pi$
 - But in $\rho(770)\pi$ and $b_1(1235)\pi$ BNL E852 also sees unnatural-parity exchange production of $\pi_1(1600)$
 - Inconsistent: production of a resonance is independent of its decay

BNL E852: $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$

• One of the deepest puzzles surrounding the π_1 s

 $\pi_1(1600) \rightarrow
ho(770)\pi$ first claimed by BNL E852

- 0.25×10^6 events in $0.05 < t' < 1.0 \, (\text{GeV}/c)^2$
- PWA model with 21 waves
- Pronounced peak at 1.6 GeV/ c^2 in 1^{-+} intensity
- Accompanied by phase motion w.r.t. other waves
- Resonance-model fit using Breit-Wigner amplitudes
- *Conclusion:* observation of $\pi_1(1600) \rightarrow \rho(770)\pi$

at 18 GeV/c 1500 12000 Intensity 1000 8000 $\pi_2(1670)$ 500 4000 1.5 1.8 1.5 1.6 1.7 1.8 1.6 Mass (GeV/c²) Phase (rad) 3.0 2.6 1.8 Mass (GeV/c²)

BNL E852, PRL 81 (1998) 5760 BNL E852, PRD 65 (2002) 072001

ENERGY CIA Boris Grube, Jefferson Lab | The Search for Exotic Matter in the Light-Meson Sector

The $\pi_1(1600) \rightarrow \rho(770)\pi$ Controversy

Analysis of BNL E852 Data by Dzierba et al.

- 5.6 × 10⁶ events in 0.08 < t' < 0.53 (GeV/c)² (20× larger sample)
- PWA with 36 waves performed independently in 12 t' bins
- Peak at 1.6 GeV/ c^2 in 1^{-+} intensity disappeared
 - Peak in E852 analysis: leakage from $\pi_2(1670)$
 - Important 2⁻⁺ waves were missing in 21-wave set
- Conclusion: No evidence for $\pi_1(1600) o
 ho(770)\pi$

• But:

- Phase motions of 1^{-+} wave nearly unchanged
- No resonance-model fit

Jefferson Lab

Dzierba et al., PRD 73 (2006) 072001

Analysis of BNL E852 Data by Dzierba et al.

- 5.6 × 10⁶ events in 0.08 < t' < 0.53 (GeV/c)² (20× larger sample)
- PWA with 36 waves performed independently in 12 t' bins
- Peak at $1.6 \,\text{GeV}/c^2$ in 1^{-+} intensity disappeared
 - Peak in E852 analysis: leakage from $\pi_2(1670)$
 - Important 2⁻⁺ waves were missing in 21-wave set
- Conclusion: No evidence for $\pi_1(1600) o
 ho(770)\pi$

• But:

- Phase motions of 1^{-+} wave nearly unchanged
- No resonance-model fit

Analysis of BNL E852 Data by Dzierba et al.

- 5.6 × 10⁶ events in 0.08 < t' < 0.53 (GeV/c)² (20× larger sample)
- PWA with 36 waves performed independently in 12 t' bins
- Peak at 1.6 GeV/ c^2 in 1^{-+} intensity disappeared
 - Peak in E852 analysis: leakage from $\pi_2(1670)$
 - Important 2⁻⁺ waves were missing in 21-wave set
- Conclusion: No evidence for $\pi_1(1600) \rightarrow \rho(770)\pi$

• But:

- Phase motions of 1^{-+} wave nearly unchanged
- No resonance-model fit

lefferson Lab

Dzierba et al., PRD 73 (2006) 072001

- 0.42×10^6 events in $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- PWA model with 42 waves
 - Similar to 36-wave set used by Dzierba et al.
- Enhancement at $1.6 \,\text{GeV}/c^2$ in 1^{-+} intensity
- Resonance-model fit using Breit-Wigner amplitudes
- *Conclusion:* observation of $\pi_1(1600) \rightarrow \rho(770)\pi$

How to explain these seemingly contradictory experimental findings?

Caused by inconsistent data or by model dependence of the PWA?

 \Rightarrow Study high-precision COMPASS data on $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$

- 0.42×10^6 events in $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- PWA model with 42 waves
 - Similar to 36-wave set used by Dzierba et al.
- Enhancement at $1.6 \,\text{GeV}/c^2$ in 1^{-+} intensity
- Resonance-model fit using Breit-Wigner amplitudes
- *Conclusion:* observation of $\pi_1(1600) \rightarrow \rho(770)\pi$

How to explain these seemingly contradictory experimental findings?

Caused by inconsistent data or by model dependence of the PWA?

 \Rightarrow Study high-precision COMPASS data on $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$

- 0.42×10^6 events in $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- PWA model with 42 waves
 - Similar to 36-wave set used by Dzierba et al.
- Enhancement at $1.6 \,\text{GeV}/c^2$ in 1^{-+} intensity
- Resonance-model fit using Breit-Wigner amplitudes
- *Conclusion:* observation of $\pi_1(1600) \rightarrow \rho(770)\pi$

How to explain these seemingly contradictory experimental findings?

Caused by inconsistent data or by model dependence of the PWA? \implies Study high-precision COMPASS data on $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$

- $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ at 190 GeV/c
- 46×10^6 events in 0.1 < t' < 1.0 (GeV/c)²
- PWA performed independently in 11 t' bins
 - PWA with 21 waves in 0.1 < t' < 1.0 (GeV/c)² ⇒ artificial peak at 1.6 GeV/c² in 1⁻⁺ intensity consistent with BNL E852 analysis
 - PWA with 36 waves in t' bin around 0.2 (GeV/c)² ⇒ peak at 1.6 GeV/c² disappears consistent with analysis by Dzierba *et al.*
 - PWA with **88 waves** in $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
 - No peak at 1.6 GeV/c²
 - Consistent with VES data on $\pi^-Be \rightarrow \pi^-\pi^-\pi^+Be$ at 37 GeV/c
 - Phase motion not very sensitive to PWA model

- $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ at 190 GeV/c
- 46×10^6 events in $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- PWA performed independently in 11 t' bins
 - PWA with 21 waves in 0.1 < t' < 1.0 (GeV/c)² ⇒ artificial peak at 1.6 GeV/c² in 1⁻⁺ intensity consistent with BNL E852 analysis
 - PWA with 36 waves in t' bin around 0.2 (GeV/c)² ⇒ peak at 1.6 GeV/c² disappears consistent with analysis by Dzierba *et al.*
 - PWA with **88 waves** in $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
 - No peak at 1.6 GeV/c²
 - Consistent with VES data on $\pi^-Be \rightarrow \pi^-\pi^-\pi^+Be$ at 37 GeV/c
 - Phase motion not very sensitive to PWA model

- $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ at 190 GeV/c
- 46×10^6 events in $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- PWA performed independently in 11 t' bins
 - PWA with 21 waves in 0.1 < t' < 1.0 (GeV/c)² ⇒ artificial peak at 1.6 GeV/c² in 1⁻⁺ intensity consistent with BNL E852 analysis
 - PWA with 36 waves in t' bin around 0.2 (GeV/c)² ⇒ peak at 1.6 GeV/c² disappears consistent with analysis by Dzierba *et al.*
 - PWA with **88 waves** in 0.1 < t' < 1.0 (GeV/c)²
 - No peak at 1.6 GeV/c²
 - Consistent with VES data on $\pi^-Be \rightarrow \pi^-\pi^-\pi^+Be$ at 37 GeV/c
 - Phase motion not very sensitive to PWA model

- $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ at 190 GeV/c
- 46×10^6 events in $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
- PWA performed independently in 11 t' bins
 - PWA with 21 waves in 0.1 < t' < 1.0 (GeV/c)² ⇒ artificial peak at 1.6 GeV/c² in 1⁻⁺ intensity consistent with BNL E852 analysis
 - PWA with 36 waves in t' bin around 0.2 (GeV/c)² ⇒ peak at 1.6 GeV/c² disappears consistent with analysis by Dzierba *et al.*
 - PWA with 88 waves in $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
 - No peak at 1.6 GeV/c²
 - Consistent with VES data on $\pi^-Be \rightarrow \pi^-\pi^-\pi^+Be$ at 37 GeV/c
 - Phase motion not very sensitive to PWA model

- $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ at 190 GeV/c
- 46×10^6 events in 0.1 < t' < 1.0 (GeV/c)²
- PWA performed independently in 11 t' bins
 - PWA with 21 waves in 0.1 < t' < 1.0 (GeV/c)² ⇒ artificial peak at 1.6 GeV/c² in 1⁻⁺ intensity consistent with BNL E852 analysis
 - PWA with 36 waves in t' bin around 0.2 (GeV/c)² ⇒ peak at 1.6 GeV/c² disappears consistent with analysis by Dzierba *et al.*
 - PWA with 88 waves in $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
 - No peak at 1.6 GeV/c²
 - Consistent with VES data on $\pi^-Be \rightarrow \pi^-\pi^-\pi^+Be$ at 37 GeV/c
 - Phase motion not very sensitive to PWA model

- Shape of 1⁻⁺ intensity distribution changes dramatically with *t*'
- Low *t*': broad distribution
- High t': peak at 1.6 GeV/ c^2

Resonance-model fit

- Novel approach: fit 11 t' bins simultaneously enforcing the same resonance parameters in all t' bins
- Low t': saturated by non-resonant component
- High t': saturated by $\pi_1(1600)$

- Shape of 1⁻⁺ intensity distribution changes dramatically with t'
- Low *t*': broad distribution
- High t': peak at 1.6 GeV/ c^2

Resonance-model fit

- Novel approach: fit 11 t' bins simultaneously enforcing the same resonance parameters in all t' bins
- Low t': saturated by non-resonant component
- High t': saturated by $\pi_1(1600)$

- Shape of 1⁻⁺ intensity distribution changes dramatically with *t*'
- Low *t*': broad distribution
- High t': peak at 1.6 GeV/ c^2

Resonance-model fit

- Novel approach: fit 11 t' bins simultaneously enforcing the same resonance parameters in all t' bins
- Low t': saturated by non-resonant component
- High t': saturated by $\pi_1(1600)$

COMPASS Proton-Target Data

• Data at high t' cannot be described without $\pi_1(1600)$ component (dashed curves)

t'-resolved analysis solves longstanding controversy

- $\pi_1(1600)$ masked by non-resonant component for $t' \lesssim 0.5 \, ({
 m GeV}/c)^2$
- Not observable by Dzierba *et al.* because analysis was limited to $t' < 0.53 (\text{GeV}/c)^2$

COMPASS Proton-Target Data

• Data at high t' cannot be described without $\pi_1(1600)$ component (dashed curves)

t'-resolved analysis solves longstanding controversy

- $\pi_1(1600)$ masked by non-resonant component for $t' \lesssim 0.5$ (GeV/c)²
- Not observable by Dzierba *et al.* because analysis was limited to t' < 0.53 (GeV/c)²

COMPASS Proton-Target Data

• Data at high t' cannot be described without $\pi_1(1600)$ component (dashed curves)

t'-resolved analysis solves longstanding controversy

- $\pi_1(1600)$ masked by non-resonant component for $t' \lesssim 0.5 \, ({\rm GeV}/c)^2$
- Not observable by Dzierba *et al.* because analysis was limited to $t' < 0.53 \, (\text{GeV}/c)^2$

- Conventional PWA requires complete knowledge of isobar amplitude
 - Employed parametrization for amplitudes of $\rho(770)$ isobar might deviate from data
- Novel technique: "freed-isobar" PWA Krinner et al., PRD 97 (2018) 114008
 - Replace fixed isobar parametrizations by step-like functions
 - Extract $\pi^-\pi^+$ isobar amplitude with well-defined J^{PC} from data
 - Greatly reduces model dependence

Jefferson Lab

- Conventional PWA requires complete knowledge of isobar amplitude
 - Employed parametrization for amplitudes of $\rho(770)$ isobar might deviate from data
- Novel technique: "freed-isobar" PWA Krinner et al., PRD 97 (2018) 114008
 - Replace fixed isobar parametrizations by step-like functions
 - Extract $\pi^-\pi^+$ isobar amplitude with well-defined J^{PC} from data
 - Greatly reduces model dependence

Jefferson Lab

- Conventional PWA requires complete knowledge of isobar amplitude
 - Employed parametrization for amplitudes of $\rho(770)$ isobar might deviate from data
- Novel technique: "freed-isobar" PWA Krinner et al., PRD 97 (2018) 114008
 - Replace fixed isobar parametrizations by step-like functions
 - Extract $\pi^-\pi^+$ isobar amplitude with well-defined J^{PC} from data
 - Greatly reduces model dependence

Jefferson Lab

- Conventional PWA requires complete knowledge of isobar amplitude
 - Employed parametrization for amplitudes of $\rho(770)$ isobar might deviate from data
- Novel technique: "freed-isobar" PWA Krinner et al., PRD 97 (2018) 114008
 - Replace fixed isobar parametrizations by step-like functions
 - Extract $\pi^-\pi^+$ isobar amplitude with well-defined J^{PC} from data
 - Greatly reduces model dependence

- Intensity peak at $m_{3\pi} \approx 1.6 \,\text{GeV}/c^2$ and $m_{\pi^-\pi^+} \approx 0.8 \,\text{GeV}/c^2$
- Clear $\rho(770)$ signal: peak in intensity + circular structure in Argand diagram
- $\rho(770)$ parametrization used in conventional PWA (gray line) agrees fairly well with measured amplitude of $\pi^-\pi^+$ subsystem

- Intensity peak at $m_{3\pi} \approx 1.6 \,\text{GeV}/c^2$ and $m_{\pi^-\pi^+} \approx 0.8 \,\text{GeV}/c^2$
- Clear $\rho(770)$ signal: peak in intensity + circular structure in Argand diagram
- $\rho(770)$ parametrization used in conventional PWA (gray line) agrees fairly well with measured amplitude of $\pi^-\pi^+$ subsystem

- Intensity peak at $m_{3\pi} \approx 1.6 \,\text{GeV}/c^2$ and $m_{\pi^-\pi^+} \approx 0.8 \,\text{GeV}/c^2$
- Clear $\rho(770)$ signal: peak in intensity + circular structure in Argand diagram
- $\rho(770)$ parametrization used in conventional PWA (gray line) agrees fairly well with measured amplitude of $\pi^-\pi^+$ subsystem

Freed-isobar PWA confirms $\pi_1(1600) \rightarrow \rho(770)\pi$

The π_1 in $\eta\pi$ and $\eta'\pi$ COMPASS Data

COMPASS, PLB 740 (2015) 303

- 190 GeV/c π⁻ beam
- Studied range $0.1 < t' < 1.0 \, (\text{GeV}/c)^2$
 - 116 000 $\pi^-\eta$ events with $\eta \to \pi^-\pi^0\pi^+$
 - 39 000 $\pi^-\eta'$ events with $\eta' \to \pi^-\pi^0\eta$ and $\eta \to \gamma\gamma$
- PWA model: partial waves with spins from 1 to 6 and natural-parity exchange

The π_1 in $\eta \pi$ and $\eta' \pi$ JPAC Coupled-Channel Analysis of COMPASS Data

- Partial-wave amplitudes from COMPASS analysis
- *D*-wave with $a_2(1700)$ signal needs to be well understood
The π_1 in $\eta\pi$ and $\eta'\pi$ JPAC Coupled-Channel Analysis of COMPASS Data

Fit by JPAC

• Analytical and unitary model based on S-matrix principles

The π_1 in $\eta\pi$ and $\eta'\pi$ JPAC Coupled-Channel Analysis of COMPASS Data

Only **single pole** required to describe peaks at 1.4 and 1.6 GeV/ c^2 in 1^{-+} waves

- $m_0 = 1564 \pm 24$ (stat.) ± 86 (sys.) MeV/ c^2 , $\Gamma_0 = 492 \pm 54$ (stat.) ± 102 (sys.) MeV/ c^2
- Consistent with $\pi_1(1600)$
- Confirmed by Kopf *et al.* in similar analysis including in addition Crystal Barrel data on $\bar{p}p \rightarrow \pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$, and $K^+ K^- \pi^0$ as well as $\pi \pi$ scattering data Kopf *et al.*, EPJC **81** (2021) 1056

The π_1 in $\eta\pi$ and $\eta'\pi$ JPAC Coupled-Channel Analysis of COMPASS Data

Only **single pole** required to describe peaks at 1.4 and 1.6 GeV/ c^2 in 1⁻⁺ waves

- Raises doubts about existence of $\pi_1(1400)$ as separate resonance
- Suggests simpler and more plausible picture: only 1 state, the $\pi_1(1600)$, below 2 GeV/ c^2
- Would solve longstanding puzzle of two π_1 states with puzzling properties
- Would remove discrepancy of $\pi_1(1400)$ with lattice QCD and most model calculations

The $\pi_1(1600)$: Three Sides of the Same Coin

Jefferson Lab

COMPASS Proton-Target Data

The $\pi_1(1600)$: Three Sides of the Same Coin

Jefferson Lab Thomas Jefferson National Accelerator Facility

COMPASS Proton-Target Data

Remaining Puzzles Spin-exotic $1^{-+} 1^+ \rho(770) \pi P$ Wave from $\pi \gamma$ Interactions

• Observation of $\pi_1(1600) \rightarrow \rho(770)\pi \Longrightarrow$ should see $\pi\gamma \rightarrow \pi_1(1600)$

CLAS

Boris Grube, Jefferson Lab | The Search for Exotic Matter in the Light-Meson Sector

Remaining Puzzles Spin-exotic $1^{-+} 1^+ \rho(770) \pi P$ Wave from $\pi \gamma$ Interactions

Jefferson Lab

Remaining Puzzles

Unnatural-Parity Exchange Production of $\pi_1(1600)$ in $b_1(1235)\pi$

Pion diffraction

- Production via natural-parity exchange expected to be dominant
- BNL E852 observed also unnatural-parity exchange production of $\pi_1(1600)$ in $b_1(1235)\pi$
- Can be verified using COMPASS data for same reaction at 190 GeV/c
- 720 000 events (5× BNL E852)
- PWA work in progress

Remaining Puzzles

Unnatural-Parity Exchange Production of $\pi_1(1600)$ in $b_1(1235)\pi$

Pion diffraction

- Production via natural-parity exchange expected to be dominant
- BNL E852 observed also unnatural-parity exchange production of $\pi_1(1600)$ in $b_1(1235)\pi$
- Can be verified using COMPASS data for same reaction at 190 GeV/c
- 720 000 events (5× BNL E852)
- PWA work in progress

A Recent Surprise Reported by BESIII

Observation of $J/\psi \rightarrow \gamma \eta_1(1855)$ with $\eta_1(1855) \rightarrow \eta \eta'$

- Dalitz-plot analysis of 15 000 $\gamma\eta\eta'$ events
- Isoscalar resonance with $J^{PC} = 1^{-+}$ required with statistical significance > 19σ
 - Parameters:

 $m_0 = 1855 \pm 9 \text{ (stat.)} {}^{+6}_{-1} \text{ (sys.)} \text{ MeV/}c^2$ $\Gamma_0 = 188 \pm 18 \text{ (stat.)} {}^{+3}_{-8} \text{ (sys.)} \text{ MeV/}c^2$

 $\implies \eta_1(1855)$

- First step towards establishing SU(3)_{flavor} partner states of $\pi_1(1600)$
- Needs confirmation by other experiments

BESIII, PRL **129** (2022) 192002 BESIII, PRD **106** (2022) 072012

A Recent Surprise Reported by BESIII

Observation of $J/\psi \rightarrow \gamma \eta_1(1855)$ with $\eta_1(1855) \rightarrow \eta \eta'$

- Dalitz-plot analysis of 15 000 $\gamma \eta \eta'$ events
- Isoscalar resonance with $J^{PC} = 1^{-+}$ required with statistical significance > 19σ
 - Parameters:

 $m_0 = 1855 \pm 9 \text{ (stat.)} {}^{+6}_{-1} \text{ (sys.)} \text{ MeV/}c^2$ $\Gamma_0 = 188 \pm 18 \text{ (stat.)} {}^{+3}_{-8} \text{ (sys.)} \text{ MeV/}c^2$

 $\implies \eta_1(1855)$

- First step towards establishing SU(3)_{flavor} partner states of $\pi_1(1600)$
- Needs confirmation by other experiments

BESIII, PRL **129** (2022) 192002 BESIII, PRD **106** (2022) 072012

A Recent Surprise Reported by BESIII

Observation of $J/\psi \rightarrow \gamma \eta_1(1855)$ with $\eta_1(1855) \rightarrow \eta \eta'$

- Dalitz-plot analysis of 15 000 $\gamma\eta\eta'$ events
- Isoscalar resonance with $J^{PC} = 1^{-+}$ required with statistical significance > 19σ
 - Parameters:

 $m_0 = 1855 \pm 9 \text{ (stat.)} {}^{+6}_{-1} \text{ (sys.) MeV/}c^2$ $\Gamma_0 = 188 \pm 18 \text{ (stat.)} {}^{+3}_{-8} \text{ (sys.) MeV/}c^2$ $\implies \eta_1(1855)$

- First step towards establishing SU(3)_{flavor} partner states of $\pi_1(1600)$
- Needs confirmation by other experiments

BESIII, PRD **106** (2022) 072012

The dust of more than 30 years of research is starting to settle

Resolved many puzzles and confusing experimental results surrounding the π_1 states

using

- high-precision experimental data
- novel analysis techniques
- advanced theoretical models

Recent results favor simpler and more plausible picture

- Instead of two states, $\pi_1(1400)$ and $\pi_1(1600)$, with hard to explain properties only the $\pi_1(1600)$ remains as a firmly established state
- However, some puzzles remain to be solved
- Currently, most likely interpretation of $\pi_1(1600)$ is a hybrid state

The dust of more than 30 years of research is starting to settle

Resolved many puzzles and confusing experimental results surrounding the π_1 states

using

- high-precision experimental data
- novel analysis techniques
- advanced theoretical models

Recent results favor simpler and more plausible picture

- Instead of two states, $\pi_1(1400)$ and $\pi_1(1600)$, with hard to explain properties only the $\pi_1(1600)$ remains as a firmly established state
- However, some puzzles remain to be solved
- Currently, most likely interpretation of $\pi_1(1600)$ is a hybrid state

The dust of more than 30 years of research is starting to settle

Having established that $\pi_1(1600)$ exists is only the starting point

- In order to proof its hybrid nature, we have to
 - study its production and decay properties with more detail and higher precision
 - search for its radial excitations, i.e. confirm BNL E852 claims of $\pi_1(2015) \rightarrow b_1(1235)\pi$ and $f_1(1285)\pi$
 - establish its SU(3)_{flavor} partner states, i.e. confirm BESIII claim of $\eta_1(1855)$, find other $\eta_1^{(\prime)}$ and K^*
- In addition, search for spin-exotic states with $J^{PC} \neq 1^{-+}$

World-wide effort

- Running or planned experiments at all major accelerator labs
- Leveraging the high precision of current and future data requires
 - More advanced statistical methods, e.g. model selection, uncertainty estimation/propagation
 - More realistic PWA models
 - Amplitudes that incorporate constraints from fundamental physical principles
 - Detailed models for production reactions and final-state interactions
 - Close collaboration of theorists and experimentalists

The dust of more than 30 years of research is starting to settle

Having established that $\pi_1(1600)$ exists is only the starting point

- In order to proof its hybrid nature, we have to
 - study its production and decay properties with more detail and higher precision
 - search for its radial excitations, i.e. confirm BNL E852 claims of $\pi_1(2015) \rightarrow b_1(1235)\pi$ and $f_1(1285)\pi$
 - establish its SU(3)_{flavor} partner states, i.e. confirm BESIII claim of $\eta_1(1855)$, find other $\eta_1^{(1)}$ and K^*
- In addition, search for spin-exotic states with $J^{PC} \neq 1^{-+}$

World-wide effort

- Running or planned experiments at all major accelerator labs
- Leveraging the high precision of current and future data requires
 - More advanced statistical methods, e.g. model selection, uncertainty estimation/propagation
 - More realistic PWA models
 - Amplitudes that incorporate constraints from fundamental physical principles
 - Detailed models for production reactions and final-state interactions
 - Close collaboration of theorists and experimentalists

Part II

Backup Slides

Backup Slides

COMPASS proton-target data

- The $\pi_1(1600)$ in the freed-isobar PWA
- Model for the Non-Resonant Component in the 1^{-+} wave

The $\pi_1(1600) \rightarrow \rho(770)\pi$ Controversy COMPASS Proton-Target Data

• PWA with 88 waves in $0.449 < t' < 0.724 (GeV/c)^2$

 Consistent with COMPASS intensity obtained from 42-wave PWA of Pb-target data in 0.1 < t'

• $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ at 190 GeV/c

Peak at 1.6 GeV/c²

 $< 1.0 \, (\text{GeV}/c)^2$

• 46×10^6 events in 0.1 < t' < 1.0 (GeV/c)²

 $\times 10^3$ $1^{-+}1^{+}\rho(770)\pi P$ Ċ COMPASS lead target (42 waves) 1.0 COMPASS proton target (88 waves) Events / (40 MeV/ c^2) 50 0.0 1.5 2.0 2.5 0.5 1.0 $m_{3\pi}$ [GeV/ c^2]

Jefferson Lab

erson National Accelerator Facility

COMPASS, PRD 105 (2022) 012005

Comparison with Conventional PWA

Coherent Sum over full $m_{\pi^-\pi^+}$ Range

• Freed-isobar PWA confirms existence of $\pi_1(1600) \rightarrow \rho(770)\pi$

Model for the Non-Resonant Component

Spin-exotic $1^{-+} \rightarrow \rho(770)\pi P$ Wave

Dominant non-resonant component: Deck effect

• MC pseudodata generated according to simple model for Deck amplitude

based on ACCMOR, NPB 182 (1981) 269

• Upper vertex: amplitude from $\pi\pi$ scattering up to *F*-wave

Hyams et al., NPB 64 (1973) 134

Partial-wave decomposition using same 88-wave set as for real data

• Deck intensity normalized to intensity of non-resonant component in resonance-model fit for $t' \lesssim 0.5 \, ({\rm GeV}/c)^2$

- Similar shape of mass spectra for $t' \lesssim 0.5 \, ({
 m GeV}/c)^2$
- Different shape at high t'