4TH WORKSHOP ON FUTURE DIRECTIONS IN SPECTROSCOPY ANALYSIS (FDSA2022, JEFFERSON LAB, 14-16 NOVEMBER 2022)

Status and Perspectives for Hadron Spectroscopy with CLAS12

Raffaella De Vita (INFN) for the CLAS Collaboration

CLAS12

CLAS12 in Hall B

Status and Perspectives for Hadron Spectroscopy with CLAS12

CLAS12 Event Display

Event reconstruction

CLAS12 kinematic reach

Beam energy at 10.6 GeV Torus current 3770 A, electrons in-bending, Solenoid magnet at 2416 A. p(e,e')X

CLAS12 in numbers

Collaboration:

- More than 200 members
- 43 institutions
- 9 countries

Experimental program:

- 47 approved proposals:
 - o targets:
 - proton, deuteron and nuclei
 - unpolarized, longitudinally and transversally polarized

7

- solid, liquid and gas
- o beam:
 - highly polarized electron beam
 - linearly polarized quasi-real photons
- o final states: inclusive, semi-inclusive and exclusive
- Iuminosity up to 10³⁵ cm⁻²s⁻¹
- 3188 PAC days
- 12 Run Groups
- 1171 Run Group days

• 10 years of approved data taking

The CLAS12 physics program

 The multidimensional structure of the nucleon – from form factors and PDFs to GPDs and TMDs

Quark confinement and the role of the glue in meson and baryon spectroscopy

 The strong interaction in nuclei – evolution of quark hadronization, nuclear transparency of hadrons, short range correlation

Spectroscopy at CLAS12

- Quark confinement and the role of the glue in meson and baryon spectroscopy:
 - What is the internal structure and what are the internal degrees of freedom of hadrons?
 - What is the role of gluons?
 - What is the origin of quark confinement?
 - Are 3-quarks and quark-antiquark the only possible configurations?

Spectroscopy at CLAS12

- Quark confinement and the role of the glue in meson and baryon spectroscopy:
 - Study of nucleon resonances in electroproduction
 - Hyperon spectroscopy and production of very-strange states
 - J/Psi photoproduction
 - Quasi-real photoproduction of light-quark mesons

Baryon spectroscopy

The baryon spectrum has been crucial for the development of QCD:

- Multiplet structure led to the proposal of the quark model
- The discovery of the Ω⁻ confirmed the path was correct
- Inner structure connected to number of colors

Many open questions (light quarks):

- Nucleon resonance spectrum and missing states
- Effective degrees of freedom and transition from partonic to hadronic description
- Strangeness rich states

11

CLAS12 N* program

N* degrees of freedom??

The N* program is one of the key physics foundations of Hall B

 CLAS12 is designed to study exclusive reaction channels over a broad kinematic range:

 πN , ωN , ϕN , ηN , $\eta' N$, $\pi \pi N$, KY, KY, KY*

- Goal is to explore the *spectrum* and *structure* of N* states
 - Search for "missing" states, studying poorly known or rare decay modes (strangenessrich)
 - Probe their underlying degrees of freedom via studies of the Q² evolution of the electroproduction amplitudes

CLAS12 N* program

 Measure exclusive electroproduction of Np, Nh, Npp, KY final states from unpolarized proton target with longitudinally polarized electron beam

 E_{b} = 6.6, 8.8, 11 GeV, Q^{2} = 0.05 \rightarrow 12 GeV², $W \rightarrow$ 3.0 GeV, cos $\theta_{m}{}^{*}$ = [-1:1]

E12-09-003	Nucleon Resonance Studies with CLAS12
E12-06-108A	KY Electroproduction with CLAS12
E12-16-010A	N* Studies Via KY Electroproduction at 6.6 and 8.8 GeV
E12-16-010	A Search for Hybrid Baryons in Hall B with CLAS12

- Study higher-lying N* states:
 - confirm signals of new baryon states observed in $\gamma p \rightarrow KY$
 - explore full regime of "missing" quark model states
- Understand active degrees of freedom that account for N* structure vs. distance scale:
 - explore dynamical structure of N* states from low to high Q²
 meson-baryon cloud to quark degrees of freedom
 - search for predicted qqqg hybrid baryons

continuing in Fall 23

K⁺Y transferred polarization

$p\pi+\pi$ - cross sections

J/ψ Near-Threshold Photoproduction

- Clean laboratory to study cc:
 - Probes gluon distribution in proton
 - Sensitive to multi-quark correlations
 - Sensitivity to the distribution of mass inside the proton via the trace anomaly
 - -Search for the LHCb pentaquarks
- J/ ψ at CLAS12:
 - Quasi-real photoproduction: electron scattered at 0 deg, undetected
 - Decay into lepton pairs (e⁺e⁻ or $\mu^{+}\mu^{-}$)
 - Measurements on proton and neutron (deuterium target)

Measurements of the J/ ψ total cross section as a function of the photon beam energy and theoretical predictions scaled to GlueX data

J/ψ signal extraction

- Charged particles detected in CLAS12 forward detector
- Electron and positrons identified via Cherenkov detector and EM calorimeter
 - Machine-learning classifier to improve e-pi separation
- Selection of quasi-real scattering events:
 - e⁺e⁻p missing mass consistent with a scattered electron at 0 deg
 - Selection via missing momentum/energy cuts
 - Selection via neural network trained on 4-momenta of final state particle from simulations

Status and Perspectives for Hadron Spectroscopy with CLAS12

J/ψ cross section

- Extraction of the total cross section from proton (RG-A) and deuteron (RG-B) data
 - Preliminary results from a fraction of the available data
- Determination of the absolute normalization in progress
- Analysis being extended to low-q electrons

 $en_{bound} \rightarrow (e')e^+e^-n$ $ep_{bound} \rightarrow (e')e^+e^-p$ $ep \rightarrow (e')\mu^+\mu^-p$ $ep \rightarrow (e')e^+e^-p$

Meson spectroscopy at CLAS12

19

Predictions of the light quark meson spectrum now available from lattice QCD:

- Spectrum includes meson state with large gluonic content (hybrids) with both regular and exotic quantum numbers
- Experimental signature: a multiplet of gluonic mesons with exotic J^{PC}, i.e. non quark-antiquark
- Searches in progress at several facilities, world-wide

CLAS12 uses quasi-real photoproduction to investigate the light quark meson spectrum and search for hybrid meson states

Meson Spectrum in LQCD

Dudek, Edwards, Guo and Thomas, PRD 88, 094505 (2013)

Quasi-real photoproduction

MesonEx:

- Detailed mapping of the meson spectrum up to masses of 2.5 GeV
- Search for rare or poorly known states (strangeness-rich, scalars, ...)
- Search states with unconventional quark-gluon configurations

- Detection of multiparticle final state from meson decay in the large acceptance spectrometer CLAS12
- Detection of the scattered electron for the tagging of the quasi-real photon in the CLAS12 Forward Tagger
- High-intensity and high-polarization tagged "photon" beam; degree of polarization can be determined eventby-event from the electron kinematics

CLAS12 $\pi^+\pi^+\pi^-n$ preliminary data

21

- First analysis of 3 pion channel from the 10.6 GeV data
- Candidate for search of the exotic π₁(1600)
- Richness spectrum already accessible with few % of the expected data

MesonEx status

- Approximately 20% of expected data ready for analysis
- Focus on charged decay products (better resolution)
- First extract two pseudoscalar (π⁺π⁻, K⁺K⁻)
- Fourier Analyse angular distributions, i.e. extract moments
 - more general expansion than just partial waves
 - check acceptance corrections
 - check distortions from backgrounds
 - model independent formalism
 - already applied to CLAS di-meson photoproduction data
- Extract partial waves from moments or directly fit partial waves
- Expand to vector-pseudoscalar final states

Xiv.org > hep-ph > arXiv:1906.04841	Search
	Help Advanc
High Energy Physics - Phenomenology	

Moments of angular distribution and beam asymmetries in $\eta \pi^0$ photoproduction at GlueX

V. Mathieu, M. Albaladejo, C. Fernández-Ramírez, A. W. Jackura, M. Mikhasenko, A. Pilloni, A. P. Szczepaniak (JPAC collaboration) (*Submitted on 11 Jun 2019*)

$$\langle Y_{\lambda\mu} \rangle (E_{\gamma}, t, M) = \frac{1}{\sqrt{4\pi}} \int d\Omega_{\pi} \frac{d\sigma}{dt dM d\Omega_{\pi}} Y_{\lambda\mu}(\Omega_{\pi})$$

Moments relate directly to partial wave amplitudes

$$\begin{split} H^0(11) &= H^1(11) + 2\sqrt{\frac{2}{5}} \operatorname{Re}(P_1^{(+)}D_2^{(+)*}) \ , \\ H^1(11) &= \frac{2}{15} \left[3\sqrt{5} \operatorname{Re}(P_0^{(+)}D_1^{(+)*}) - \sqrt{15} \operatorname{Re}(P_1^{(+)}D_0^{(+)*}) + 5\sqrt{3} \operatorname{Re}(S_0^{(+)}P_1^{(+)*}) \right] \ , \\ H^0(20) &= H^1(20) - \frac{2}{35} \left[7|P_1^{(+)}|^2 - 5|D_1^{(+)}|^2 + 10|D_2^{(+)}|^2 \right] \ , \\ H^1(20) &= \frac{4}{35} \left[7|P_0^{(+)}|^2 + 5|D_0^{(+)}|^2 + 7\sqrt{5} \operatorname{Re}(S_0^{(+)}D_0^{(+)*}) \right] \ , \\ H^0(21) &= H^1(21) + \frac{2}{7}\sqrt{6} \operatorname{Re}(D_1^{(+)}D_2^{(+)*}) \ , \\ H^1(21) &= \frac{2}{35} \left[7\sqrt{5} \operatorname{Re}(S_0^{(+)}D_1^{(+)*}) + 7\sqrt{3} \operatorname{Re}(P_0^{(+)}P_1^{(+)*}) + 5\operatorname{Re}(D_0^{(+)}D_1^{(+)*}) \right] \ , \end{split}$$

22

MesonEx: K⁺K⁻ p preliminary data

Status and Perspectives for Hadron Spectroscopy with CLAS12

MesonEx: K⁺K⁻ p preliminary data

Allowed partial waves $J^{PC}(I^G): 0^{++}(0^+, 1^-), 1^{--}(0^+, 1^-), 2^{++}(0^+, 1^-), 3^{--}(0^+, 1^-), \dots$

Unpolarised Moments

M. Nicol, University of York

MesonEx: K⁺K⁻ p preliminary data

Allowed partial waves $J^{PC}(I^G): 0^{++}(0^+, 1^-), 1^{--}(0^+, 1^-), 2^{++}(0^+, 1^-), 3^{--}(0^+, 1^-), \dots$

Polarised Moments

M. Nicol, University of York

Status and Perspectives for Hadron Spectroscopy with CLAS12

MesonEx: $\pi^+\pi^-$ p preliminary data

26

MesonEx: $\pi^+\pi^-$ p preliminary data

Allowed partial waves $J^{PC}(I^G)$: : $0^{++}(0^+)$, $1^{--}(1^+)$, $2^{++}(0^+)$, $3^{--}(1^+)$, ...

A. Thornton, University of Glasgow

Summary

- CLAS12 spectrometer successfully in operation since 2018
- Data taking for realization of extensive physics program in progress
- Several analyses on beam spin asymmetries already published, including first spectroscopy results (N*)
- More to come from ongoing analyses in both baryon and meson sectors
- Statistics and reach to be extended with already approved data taking (>8 y)
- High luminosity upgrade (x2) already approved and being implemented

