Recent Results and Perspectives from the Gue Experiment

Sean Dobbs Florida State U.

4th Workshop on Future Directions in Spectroscopy Analysis (FDSA2022) November 14, 2022

Hadron Spectroscopy and Photoproduction

 Photoproduction is an essential process to study normal hadrons and to search for exotic hadrons

- Can produce mesons of any J^{PC} through VMD
- Photon polarization provides constraints on production processes
- Studies of polarization transfer and other production observables provides additional insight into hadron properties

Light Meson Spectrum from Lattice QCD

HadSpec: Dudek, Edwards, Guo, Thomas, PRD 88, 094505 (2013)

Light Meson Spectrum from Lattice QCD

HadSpec: Dudek, Edwards, Guo, Thomas, PRD 88, 094505 (2013)

Light Meson Spectrum from Lattice QCD

HadSpec: Dudek, Edwards, Guo, Thomas, PRD 88, 094505 (2013)

S. Dobbs — FDSA2022 — November 15, 2022 — Recent Results and Perspectives from the GlueX Experiment

Hybrid Mesons

The GlueX Experiment

Detailed understanding of light-quark meson spectrum requires ٠ amplitude analysis.

Beam Asymmetry Σ

(π⁰/η)p: Phys. Rev. C95, 042201 (2017) (n/n')p: Phys. Rev. C100, 052201(R) (2019) **K+Σ**⁰: Phys. Rev. C101, 065206 (2020) **π**-Δ++: Phys. Rev. C103, 022201 (2021) K+Λ(1520): Phys. Rev. C105, 035201 (2022) More coming...

SDMEs: ρ , ω , ϕ in progress

S. Dobbs — FDSA2022 — November 15, 2022 — Recent Results and Perspectives from the GlueX Experiment

 Detailed understanding of light-quark meson spectrum requires amplitude analysis.

 Detailed understanding of light-quark meson spectrum requires amplitude analysis.

S. Dobbs — FDSA2022 — November 15, 2022 — Recent Results and Perspectives from the GlueX Experiment

11

GlueX: High Statistics Photoproduction Data

GlueX has collected orders

 of magnitude more data than
 previous experiments at E_x ≈
 9 GeV

High Statistics π⁺π⁻ and Excited Vectors

- GlueX can access excited vector mesons decaying to e.g. π+π- and ωπ
 - Need consistent understanding of spectra in photoproduction and e+eannihilation

A. Austregesilo, Wed. 2:05 pm

High Statistics KK and Excited Vectors

- Can extend studies to KK
 - K_SK_S : $J^{PC} = even^{++}$
 - K_SK_L : $J^{PC} = odd^{--}$
- Comparison with e+e- annihilation
- Future coupled channel fits for $K_{\rm S}K_{\rm S}$

S. Dobbs — FDSA2022 — November 15, 2022 — Recent Results and Perspectives from the GlueX Experiment

ηπ Amplitude Analysis at GlueX

 $\pi\eta$ / $\pi\eta'$ "golden channels" for π_1 search: small b.f. but experimentally clean

- Odd L $\pi\eta^{(\prime)} \rightarrow \text{exotic } J^{\text{PC}}$
- Study known a₀/a₂ in πη
- Apply analysis to $\pi \eta'$ with stronger π_1
- Can study several channels
- $\gamma p \to \eta \pi^0 p \qquad \gamma p \to \eta \pi^- \Delta^{++}$
- Control understanding of production
- with multiple η decays
 - $\eta \to \gamma \gamma$ $\eta \to \pi^+ \pi^- \pi^0$
 - Control understanding of acceptance and backgrounds
- Use polarization to control acceptance, help separate amplitudes
- Fits with different levels of model-dependence

M. Albrecht, Tue. 2:05 pm

GlueX-I Data

 $0.1 < -t < 0.3 \text{ GeV}^2$

Preliminary $\gamma p \rightarrow a_2(1320)p$ Cross Section

- Preliminary cross sections agree with with JPAC prediction
 - Can also extract amplitudes for individual waves
- Photon polarization crucial to control contributions from different production amplitudes
- Informs amplitude fits for exotic waves

Study of b₁(1235) at GlueX

- LQCD predicts dominant π₁ decay to be b₁π (→ 5π)
- First step: understand b₁ production and decay to ωπ
 - Large samples of millions of events
 - Also search for excited vectors and others
 - Extend analysis to other VP channels (ωη, φπ, φη, ...)
- Access to charged and neutral b₁
 - $\gamma p \to b_1^0 p \to \omega \pi^0 p$

•
$$\gamma p \to b_1^- \Delta^{++} \to \omega \pi^- \Delta^{++}$$

Study of b₁(1235) at GlueX: S/D ratio

 Can use amplitude model for VP photoproduction to measure ratio of D/S amplitudes in b₁ → ωπ

HadSpec: PRD 100, 054506 (2019) LCQD: |D/S| = 0.27(20)

• First test of model finds good fits with 1^+ and 1^- waves near b_1 peak

ωη Photoproduction at GlueX

- wη photoproduction probes the production of I=0 states:
 - Normal: ω (1--), h₁ (1+-)
 - Exotic: 0---, 2+-
 - Unobserved: 2--
- 145k events seen in GlueX-I data
- Amplitude analysis in progress

Λ(1405) in Photoproduction

- Λ(1405) lies just below K̄N threshold
 - I=0 $J^{P} = 1/2^{-1}$
 - · Decays to $\Sigma\pi$
- Lineshape not simple B-W
- Nature of state has been long discussed
 - 2 poles?
 - Something else?
 - Current lineshape studies limited by knowledge of $\Sigma^0\pi^0$ channel
 - Pure I=0, no Σ(1385) bkgd.

CLAS, PRC 87, 035206 (2013)

Λ(1405) in Photoproduction @ GlueX

- Preliminary efficiency-corrected mass spectra shown for GlueX-I data in $\chi p \rightarrow K^+ \Sigma^0 \pi^0$
- Yields shown in 3 t-bins
 - Clear $\Lambda(1405)$ and $\Lambda(1520)$ signals
- With full GlueX-I data, we can study E_8 and t-dependence of lineshape using largest sample of $\Sigma^0 \pi^0$ available (>10k events in $\Lambda(1405)$ region)

Prospects for Cascade Spectroscopy

- The Cascade (ssd, ssu) spectrum is poorly known nothing new since 1988!
 - LQCD predicts rich spectrum, many narrow states
- CLAS observed photoproduction of ground states

•

 Production of excited cascades via a forward-going kaon?

State	Quality
Ξ(1320)	(1/2)+ ****
Ξ(1530)	(3/2)+ ****
Ξ(1690)	***
Ξ(1820)	(3/2)- ***
Ξ(1950)	***
Ξ(2030)	***

22

Hunting for Excited Cascades

- GlueX has identified peaks corresponding to several of these states
- Cross sections and polarization observables are being measured

S. Dobbs — FDSA2022 — November 15, 2022 — Recent Results and Perspectives from the GlueX Experiment

Charmonium Photoproduction Near Threshold

- Production of cc near threshold probes the distribution of gluons in the proton and the nature of the proton mass
 - Can also look for s-channel production of resonant states

 J/ψ

 J/ψ

 \boldsymbol{p}

 P_c

Published GlueX J/ψ Photoproduction Results

- Used portion of GlueX-I data [469 J/ψ] to measure cross sections
- Model-dependent limits set on P_c production, molecular models preferred
- Limits depend on VMD + understanding of production mechanism

GlueX: PRL 123, 072001 (2019)

Preliminary GlueX-I J/ψ Photoproduction Results

- Full GlueX-I data yields $2270 \pm 58 \text{ J/}\psi$'s
- Overall normalization uncertainty ~20%
- "Dip" above 9 GeV has
 2.6σ (1.3σ) local (global)
 significance

Comparing GlueX-I results to models

 Models based on gluon exchange and QCD factorization predict smooth energy dependence, connect to gluonic structure of the proton

GLJ: PRD 103, 096010 (2021) ISSW: EPJC 34, 297 (2004)

 Models with open-charm exchange predict structures at thresholds, shallow t-dependence

S. Dobbs — FDSA2022 — November 15, 2022 — Recent Results and Perspectives from the GlueX Experiment

Preliminary GlueX-I J/ψ Differential Cross Sections

- Calculate dσ / dt including event-by-event luminosity weighting
- Report cross sections at bin means (points)

Preliminary GlueX-I J/ψ Differential Cross Sections

- Differential cross sections generally consistent with expectations of gluonic exchange, except near threshold
- Room for contributions of box diagrams, etc.—affects P_c interpretation

Summary and Prospects

- Photoproduction is an interesting process to look for exotic hadrons crucial to confirm their production in new processes
- GlueX has collected the world's largest photoproduction dataset
 - Collaboration with theory is crucial for understanding
- First amplitude analyses of $\eta\pi$ and $\eta'\pi$ aim to identify the π_1 in photoproduction
 - Analysis of $\omega\pi$ focusing on study of b_1 and ρ 's
 - Next step: apply techniques to other PS-PS, V-PS final states
- Measurements of hyperons like Λ(1405) and Ξ baryons promise to provide insight into their structure
- First detailed studies of J/ψ photoproduction near threshold
- GlueX-II run in progress, planned to end around 2025
 - Other approved experimental programs includes JLab Eta Factory, spectroscopy with intense K_L beam (≈10⁴/s), polarized target

Backup Slides

M.Albrecht (JLUO 2022)

The GlueX Experiment: Photon Beam

- Photon beam generated via coherent bremsstrahlung off thin diamond radiator
- Photon energies tagged by scattered electrons
 - Energy measurement precision < 25 MeV
- Photon linear polarization $P_{\gamma} \sim 40\%$ in peak
- Intensity of ~1–5 \times 107 g/s in peak

Definition of Amplitudes

- Described by three angles: $\cos(\theta)_{\eta}$ and ϕ_{η} in the $\eta\pi$ rest frame, angle Φ between polarization vector and production plane
- Amplitudes incorporate beam polarization, are eigenstates of reflectivity $\epsilon = \pm 1$

[V.Mathieu et.al. (JPAC), PRD100(2019) 5, 054017]

• Basis: Z_l^m amplitudes defined as $Z_l^m(\Omega, \Phi) = Y_l^m(\Omega)e^{-i\Phi}$

$$I(\Omega, \Phi) = 2\kappa \sum_{k} \left\{ (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(-)} \operatorname{Re}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 - P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(+)} \operatorname{Im}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell, m} [\ell]_{m;k}^{(-)} \operatorname{Im}[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} \right\}$$

- Complexity: Positive and negative reflectivity, m = -l...l allowed
- Frequent exchange with JPAC

Malte Albrecht (IU)

Study of $b_1(1235)$ Decay: Example Fit

- Independent fits for each beam polarization orientation
- Inclusion of 1⁻ and 1⁺ waves leads to good description of angular distributions

Malte Albrecht (IU)

ηπ Amplitude Analysis at GlueX

- Clear signals at $a_0(980)$ and $a_2(1320)$ masses
- Different angular dependence \rightarrow different dominant production wave
 - D_1 for $\eta \pi^-$, D_2 for $\eta \pi^0$

 $0.1 < -t < 0.3 \text{ GeV}^2$

S. Dobbs — FDSA2022 — November 15, 2022 — Recent Results and Perspectives from the GlueX Experiment

ηπ Amplitude Analysis at GlueX

Clear signals at $a_0(980)$ and $a_2(1320)$ masses

Peaks have different t-dependence

 $0.1 < -t < 0.3 \text{ GeV}^2$

$$0.3 < -t < 0.6 \text{ GeV}^2$$

 $0.6 < -t < 1.0 \text{ GeV}^2$

Searching For Hybrid Mesons

- Mesons grouped into nonets of similar J^{PC}
 - Must establish quantum numbers and pole parameters through amplitude analysis
- Meson QNs
 - Allowed: 0-+, 0++, 1--, 1+-, 2++, 2-+,...
 - Forbidden: 0--, 0+-, 1-+, 2+-, ...
- Hybrid Meson QNs
 - 0⁻⁺, 0⁺⁻, 1⁻⁻, 1⁻⁺, 2⁻⁺, 2⁺⁻, ...
- Hybrid mesons can be found with normal and exotic quantum numbers

 $J=L+S P=(-1)^{L+1} C=(-1)^{L+S}$

"Normal" Meson

"Hybrid" Meson

Hybrid–Meson mass splitting ~ 1.0 – 1.5 GeV

HIGH-T SETTINGS CRUCIAL FOR SENSITIVITY

Improved sensitivity at high t for a given coupling

4% scale uncertainty on cross section

SIGNIFICANCE FIT

Fit 1: bare Gaussian shape describes the cross section well

Fit 2: Signal + background at GlueX upper limit (90% confidence interval). The resonances lead to major tension with the data at high-t.

Fit 3: Same as 2, but with Pc at upper limit (90% confidence interval) from the preliminary J/ψ -007 results themselves

The data suggest a stringent upper limit on the resonant cross section (see next slide).

> U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne. LLC

4% scale uncertainty on cross section limit

RESULTS AND IMPLICATIONS

Cross-section at the resonance peak for model-independent upper limits

Upper limit for P_c cross section almost order of magnitude below GlueX limit.

Results are inconsistent with reasonable assumptions for true 5-quark states.

Door is still open for molecular states, but will be very hard to measure in photoproduction due to small overlap with both γp initial state and J/ ψp final state.

To learn more we need a large-acceptance high-intensity photoproduction experiment, and potentially access to polarization observables. This can be achieved with the SoLID-J/ ψ experiment

Prospects for future J/ ψ production measurements

- JLab Hall C measurements also see no clear P_c, limits are similarly modeldependent, CLAS12 measurements under way
 - Proposal for double polarization measurements in Hall A
- Future: electro- and photoproduction at SOLID ($\mathscr{L} = 10^{37} \text{cm}^{-2} s^{-1}$)
- More future: linearly polarized photoproduction at GlueX with energyupgraded CEBAF

Open Charm Production Near Threshold

- Hadron (cc̄) molecules like to decay to open-charm final states, can we see them at GlueX? (c.f. LHCb)
 - Also will help with J/ψ interpretation
- Open charm photoproduction cross section measured at SLAC for $E_{\chi} \approx 20 \text{ GeV}$ based on ~50 events
 - Roughly 5-10 larger than J/ψ cross section
 - Exclusive reconstruction of e.g. $D^{(*)0} \Lambda_{c^+}$ is a factor \approx 25 lower due to b.f.s
- Likely need full GlueX-II statistics with improved π/K separation

S. Dobbs — FDSA2022 — November 15, 2022 — Recent Results and Perspectives from the GlueX Experiment

Charmonium Photoproduction Near Threshold

- Current max CEBAF energy allows study of bound $c\bar{c}$, P_c states
- 17 GeV e⁻ gives access to most exotic candidates
- 22 GeV e- gives good phasespace, linear polarization

JPAC Cross Section Predictions

- JPAC predictions using fixed-spin exchanges near threshold
 - PRD 102, 114010 (2020)
- GlueX can test model by measuring $\chi_{c1}(1P), \psi(2S)$ production

Projections for J/\psi\pi^+\pi^- Photoproduction at GlueX

 $\gamma p \rightarrow J/\psi \pi^+\pi^- p, J/\psi \rightarrow e^+e^-$

- Assumes 1 year @ 500 pb⁻¹, Br(X,Y $\rightarrow \pi^+\pi^-J/\psi$) = 5%
- 17 GeV: $N(\psi(2S)) = 400$, N(X(3872)) = 650, N(Y(4260)) = 20
- 22 GeV: $N(\psi(2S)) = 900$, N(X(3872)) = 2300, N(Y(4260)) = 120

Projections for J/\psi \pi \pi Photoproduction at GlueX

- Assumes 1 year @ 500 pb⁻¹, Br(X,Y $\rightarrow \pi^+\pi^-J/\psi$) = 5%
- 17 GeV $[J/\psi \pi^+\pi^-]$: N($\psi(2S)$) = 400, N(X(3872)) = 650
- 17 GeV $[J/\psi \pi^0 \pi^0]$: N($\psi(2S)$) = 40, N(X(3872)) = 300