Molecular states with charm and strangeness

R. Molina, F. Gil, T. Branz, L. R. Dai and E. Oset

- 1. Introduction
- 2. The Local Hidden Gauge Approach
- 3. The $X_0(2866)$ or $T_{cs}(2900)$
- 4. The $T_{c\bar{s}}(2900)$
- 5. Analysis of LQCD data on DK scattering and the $D_{s0}(2317)$
- 6. Conclusions

Intro

Many exotics have been discovered ...

- D_{s0}(2317), D_{s1}(2460), X(3872) close to D^(*)K, D^{*}D̄, BABAR, CLEO, BELLE (2003)
- $Z_c(3900)$, BESIII, 2013 close to $D\overline{D}^*$, $c\overline{q}q\overline{c}$ (q = u, d)
- $Z_{cs}(3985)$, BESIII, 2021 close to $\overline{D}_s^* D / \overline{D}_s D^*$, $c \overline{q} s \overline{c}$
- $X_0(2866), X_1(2900)$ now $T_{cs}(2900)$, LHCb, 2020 close to $D^*\bar{K}^*, c\bar{q}s\bar{q}$
- *T_{cc}*(3875), LHCb, 2021
 close to *DD**, *cq̄cq̄*
- $T_{c\bar{s}}(2900)$, LHCb, 2022 close to D^*K^* , $c\bar{s}q\bar{q}$

New flavor exotic tetraquark ($C = -1, S = 1, I_3 = 0$)

LHCb (2020)

Two states $J^P = 0^+, 1^-$ decaying to $\overline{D}K$. First clear example of an heavy-flavor exotic tetraquark, $\sim \overline{csud}$. Now $T_{cs}(2900)$

$$X_0(2866): M = 2866 \pm 7$$
 and $\Gamma = 57.2 \pm 12.9 \,\mathrm{MeV},$
 $X_1(2900): M = 2904 \pm 5$ and $\Gamma = 110.3 \pm 11.5 \,\mathrm{MeV}.$

R. Aaij et al. (LHCb Collaboration), PRL125(2020), PRD102(2020)

New exotic tetraquark seen in $D_s^+\pi^+$ (C = 1, S = 1, I = 1)

LHCb (2022)

One state decaying $T_{c\bar{s}}(2900)$ decaying to $D_s^+\pi^-$ and $D_s^+\pi^+$ has been observed.

- The analysis favors $J^P = 0^+$
- Mass, $m = 2908 \pm 11 \pm 20$ MeV
- Width, $\Gamma = 136 \pm 23 \pm 11$ MeV

LHCb-PAPER-2022-026 Note that, D^*K^* th.: 2903 MeV $D_s^*\rho$ th.: 2890 MeV

Flavour exotic states

• 2010. Prediction of several flavour exotic states

PHYSICAL REVIEW D 82, 014010 (2010)

New interpretation for the $D_{s2}^{*}(2573)$ and the prediction of novel exotic charmed mesons

R. Molina,1 T. Branz,2 and E. Oset1

¹Departamento de Física Teórica and IFIC, Centro Misto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Apartado 22085, 46071 Valencia, Spain ²Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D-72076 Tübingen, Germany (Received 4 May 2010): published 21 July 2010)

In this manuscript we study the vector-vector interaction within the hidden-gauge formalism in a coupled channel unitary approach. In the sector C = 1, S = 1, J = 2 we get a pole in the *T* matrix around 2572 MeV that we identify with the $D_{22}^*(2573)$, coupling strongly to the $D^*K^*(D^*_{22}\phi(au))$ channels. In addition we obtain resonances in other exotic sectors which have not been studied before such as C = 1, S = -1, C = 2, S = -1 and C = 2, S = -1. These "flavor-exotics" states are interpreted as D^{**}_{12}, D^*_{12} and $D^{**}_{12}D^*_{12}$ molecular states but have not been observed yet. In total we obtain nine states with dufterent spin, isospin, charm, and strangeness of non-C = 0, S = 0 and C = 1, S = 0 character, which have been reported before.

DOI: 10.1103/PhysRevD.82.014010

PACS numbers: 14.40.Rt, 12.40.Vv, 13.75.Lb, 14.40.Lb

- Free parameter fixed with $D_{s2}(2573)$; couples to D^*K^* , $c\bar{q}q\bar{s}$
- Flavour exotic states with I = 0, $J^P = \{0, 1, 2\}^+$ coupling to $D^*\bar{K}^*$ are predicted, $c\bar{q}s\bar{q}$
- Doubly charm states, I = 0; $J^P = 1^+$, close to D^*D^* are predicted, $c\bar{q}c\bar{q}$, and I = 1/2; $J^P = 1^+$, close to $D^*D_s^*$ $c\bar{q}c\bar{s}$

Phys. Rev. D 82 (2010), Molina, Branz, Oset

3.5 C = 1; S = 1; I = 1

In this sector the potential is attractive for the $D^*K^* \to D_s^*\rho$ reaction. For J = 0 and 1 this potential is around $-Tg^2$ whereas it is by a factor of two bigger $-13g^2$ for J = 2 (see Table 14). In fact, we only obtain a pole for J = 2 For J = 0 and 1 we only observe a cusp in the $D_{s\rho}^*\rho$ threshold. In Table 5 we show the pole position and couplings to the different channels. Both channels, D^*K^* and $D_s^*\rho$, are equally important as one can deduce from the corresponding couplings. The broad width of the ρ meson has to be taken into account

lpha = -1.6 ho width not included $D^*K^* \rightarrow DK$ considered Cusp around $D^*_s
ho$, D^*K^* th. separated only by 14 MeV

Flavour exotic states

Molina, Branz, Oset, PRD82(2010)

C, S	Channels	$I[J^P]$	\sqrt{s}	$\Gamma_{\rm A}(\Lambda=1400)$	$\Gamma_{\rm B}(\Lambda=1200)$	State	$\sqrt{s_{exp}}$	$\Gamma_{\rm exp}$
1, -1	D*	0[0+]	2848	23	59	$X_0(2866)$ or $T_{CS}(2900)$	2866	57
		0[1+]	2839	3	3			
		0[2+]	2733	11	36			
1,1	$D^*K^*, D_s^*\omega$	0[0+]	2683	20	71			
	$D_s^* \phi$	0[1 ⁺]	2707	4×10^{-3}	4×10^{-3}			
		0[2 ⁺]	2572	7	23	D _{s2} (2573)	2572	20
1,1	$D^*K^*, D_s^*\rho$	1[0+]	Cusp stru	icture around $D_s^* \rho$, D* K*	new T _{CS} (2900)	2908	136
1, 1		1[1+]	Cusp stru	icture around $D_s^* \rho$, D*K*			
1, 1		1[2+]	2786	8	11			
2,0	D* D*	0[1+]	3969	0	0			
2,1	$D^*D_s^*$	$1/2[1^+]$	4101	0	0			

Table 1: Summary of the nine states obtained. The width is given for the model A, Γ_A , and B, Γ_B . All the quantities here are in MeV. Repulsion in C = 0, S = 1, I = 1/2; C = 1, S = -1, I = 1; C = 1, S = 2, I = 1/2; C = 2, S = 0, I = 1 and C = 2, S = 2, I = 0 is found. Form factors in the $D^*D\pi$ vertex; Model A: $F_1(q^2) = \frac{\Lambda_D^2 - m_\pi^2}{\Lambda_D^2 - q^2}$. Titov, Kampfer EPJA7, PRC65 with $\Lambda_b = 1.4, 1.5$ GeV and $g = M_\rho/2 t_\pi$. Model B: $F_2(q^2) = e^{q^2/\Lambda^2}$ Navarra, Nielsen, Bracco PRD65 (2002). $\Lambda = 1, 1.2$ GeV and $g_D = g_{D^*D\pi}^{exp} = 8.95$ (experimental value). Subtraction constant $\alpha = -1.6$.

Many studies appeared after these discoveries ...

- He, Wang, Zhu, EPJC80, 1026 (2020), Karliner, Rosner, PRD102(2020), X₀(2866), compact tetraquark
- X. H. Liu, Yan et al., EPJC80(2020), X₀(2866), Triangle Singularity
- M. Z. Liu, Xie, Geng, PRD102(2020), X₀(2866), D^{*}K^{*} molecule (one-boson ex.), X₁(2900) cannot be, Qi, Wang et al. EPJC81(2021), X₁ is a D
 ₁K molecule (ρ, ω ex.)
- Ying-Hui Ge, X.H. Liu and H. W. Kei, 2207.09900, the T_{cs} could be a TS from the χ_{c1}D^{*}K^{*} loop. However, the TS peak around the D^{*}_sρ threshold from the D^{**}D^{*}_sρ loop cannot explain the T_{cs}(2900)
- Du, Baru, Dong, Filin, Nieves, F. K. Guo, T_{cc}, PRD105, (2022), 3-body dynamics, D⁰D⁰π⁺, contact+OPE, DD* molecule
- Albaladejo, T_{cc} from DD^* , can have I = 0 or 1
- Feijoo, Liang, Oset, PRD104(2021), T_{cc} as DD^* , has I = 0, decay width to $D^0D^0\pi^+ \sim 43 \text{ MeV}$
- Padmanath, Prelovsek, virtual *s*-wave bound state for $m_{\pi} = 280$ MeV of DD^* in LatticeQCD ...

The Local Hidden Gauge Approach

The hidden gauge formalism Bando, Kugo, Yamawaki

Lagrangian

$$\mathcal{L} = \mathcal{L}^{(2)} + \mathcal{L}_{III} \tag{1}$$

$$\mathcal{L}^{(2)} = \frac{1}{4} f^2 \langle D_\mu U D^\mu U^\dagger + \chi U^\dagger + \chi^\dagger U \rangle$$

$$\mathcal{L}_{III} = -\frac{1}{4} \langle V_{\mu\nu} V^{\mu\nu} \rangle + \frac{1}{2} M_V^2 \langle [V_\mu - \frac{i}{g} \Gamma_\mu]^2 \rangle$$
(2)

$$D_{\mu}U = \partial_{\mu}U - ieQA_{\mu}U + ieUQA_{\mu}, \qquad U = e^{i\sqrt{2}P/f}$$
(3)

$$\mathcal{L}_{V\gamma} = -M_V^2 \frac{e}{g} A_\mu \langle V^\mu Q \rangle$$

$$\mathcal{L}_{VPP} = -ig \langle V^\mu [P, \partial_\mu P] \rangle; \quad g = M_V/2f$$

$$\widetilde{\mathcal{L}}^{(2)} = \frac{1}{12f^2} \langle [P, \partial_\mu P]^2 + MP^4 \rangle. \tag{4}$$

Local Hidden Gauge Approach Vector-vector scattering

11

Local Hidden Gauge Approach

Figure 1: The $D^*\bar{K}^* \to D^*\bar{K}^*$ interaction at the tree level; (a) contact term; (b) exchange of light vectors; (c) exchange of a heavy vector.

Approximation

$$\begin{split} \epsilon_{1}^{\mu} &= (0,1,0,0) \\ \epsilon_{2}^{\mu} &= (0,0,1,0) \\ \epsilon_{3}^{\mu} &= (|\vec{k}|,0,0,k^{0})/m \\ \mathcal{L}_{III}^{(3V)} &= ig\langle (\partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu})V^{\mu}V^{\nu} \rangle = ig\langle [V_{\mu},\partial_{\nu}V_{\mu}]V^{\nu} \rangle \end{split} \qquad \begin{aligned} \epsilon_{1}^{\mu} &= (0,1,0,0) \\ \epsilon_{2}^{\mu} &= (0,0,1,0) \\ \epsilon_{3}^{\mu} &= (0,0,0,1) \\ \epsilon_{3}^{\mu} &= (0,0,0,1) \end{aligned}$$

Spin projectors

$$\mathcal{P}^{(0)} = \frac{1}{3} \epsilon_{\mu} \epsilon^{\mu} \epsilon_{\nu} \epsilon^{\nu}; \quad \mathcal{P}^{(1)} = \frac{1}{2} (\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu} - \epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu})$$
$$\mathcal{P}^{(2)} = \left\{ \frac{1}{2} (\epsilon_{\mu} \epsilon_{\nu} \epsilon^{\mu} \epsilon^{\nu} + \epsilon_{\mu} \epsilon_{\nu} \epsilon^{\nu} \epsilon^{\mu}) - \frac{1}{3} \epsilon_{\mu} \epsilon^{\mu} \epsilon_{\nu} \epsilon^{\nu} \right\}.$$

The $X_0(2866)$ or $T_{cs}(2900)$

Potential V: contact + vector-meson exchange (ρ , ω)

J	Amplitude	Contact	V-exchange	\sim Total
0	$D^*\bar{K}^* \to D^*\bar{K}^*$	4g ²	$-\frac{g^2(p_1+p_4).(p_2+p_3)}{m_D^{*}}+\frac{1}{2}g^2(\frac{1}{m_{\omega}^2}-\frac{3}{m_{\rho}^2})(p_1+p_3).(p_2+p_4)$	-9.9g ²
1	$D^*\bar{K}^* \to D^*\bar{K}^*$	0	$\frac{g^2(\rho_1+\rho_4).(\rho_2+\rho_3)}{m_D^2*} + \frac{1}{2}g^2(\frac{1}{m_\omega^2} - \frac{3}{m_\rho^2})(\rho_1+\rho_3).(\rho_2+\rho_4)$	-10.2g ²
2	$D^*\bar{K}^* \rightarrow D^*\bar{K}^*$	$-2g^{2}$	$-\frac{g^2(p_1+p_4).(p_2+p_3)}{m_{D_e^*}^2} + \frac{1}{2}g^2(\frac{1}{m_{\omega}^2} - \frac{3}{m_{\rho}^2})(p_1+p_3).(p_2+p_4)$	-15.9g ²

Table 2: Tree level amplitudes for $D^*\bar{K}^*$ in I = 0. Last column: $(V_{\text{th.}})$.

J	Amplitude	Contact	V-exchange	\sim Total
0	$D^*\bar{K}^* \rightarrow D^*\bar{K}^*$	$-4g^2$	$\frac{g^2(p_1+p_4).(p_2+p_3)}{m_{D^*}^2} + \frac{1}{2}g^2(\frac{1}{m_{\omega}^2} + \frac{1}{m_{\rho}^2})(p_1+p_3).(p_2+p_4)$	9.7g ²
1	$D^*\bar{K}^* \rightarrow D^*\bar{K}^*$	0	$-\frac{g^2(p_1+p_4).(p_2+p_3)}{m_D^2*}+\frac{1}{2}g^2(\frac{1}{m_\omega^2}+\frac{1}{m_\rho^2})(p_1+p_3).(p_2+p_4)$	9.9g ²
2	$D^*\bar{K}^* \rightarrow D^*\bar{K}^*$	2g ²	$\frac{g^2(p_1+p_4).(p_2+p_3)}{m_{D_s^*}^2} + \frac{1}{2}g^2(\frac{1}{m_{\omega}^2} + \frac{1}{m_{\rho}^2})(p_1+p_3).(p_2+p_4)$	15.7g ²

Table 3: Tree level amplitudes for $D^*\bar{K}^*$ in I = 1. Last column: $(V_{\text{th.}})$. The interaction is attractive for I = 0 and repulsive for I = 1.

Local Hidden Gauge Approach

J	Amplitude	Contact	V-exchange	\sim Total
0	$D^*K^* \to D^*K^*$	0	$\frac{g^2}{2}(\frac{1}{m_o^2}-\frac{1}{m_\omega^2})(p_1+p_3).(p_2+p_4)$	$0.11g^{2}$
0	$D^*K^*\to D^*_s\rho$	$4g^2$	$-\frac{g^2(p_1+p_4)(p_2+p_3)}{m_{D^*}^2}-\frac{g^2(p_1+p_3).(p_2+p_4)}{m_{K^*}^2}$	$-6.8g^{2}$
0	$D^*_s ho o D^*_s ho$	0	0	0
1	$D^*K^* \to D^*K^*$	0	$rac{g^2}{2}(rac{1}{m_ ho^2}-rac{1}{m_\omega^2})(p_1+p_3).(p_2+p_4)$	$0.11g^{2}$
1	$D^*K^*\to D^*_s\rho$	0	$\frac{g^2(p_1+p_4)(p_2+p_3)}{m_{D^*}^2} - \frac{g^2(p_1+p_3).(p_2+p_4)}{m_{K^*}^2}$	$-6.6g^{2}$
1	$D_s^* \rho \to D_s^* \rho$	0	0	0
2	$D^*K^* \to D^*K^*$	0	$rac{g^2}{2}(rac{1}{m_ ho^2}-rac{1}{m_\omega^2})(p_1+p_3).(p_2+p_4)$	$0.11g^{2}$
2	$D^*K^*\to D^*_s\rho$	$-2g^{2}$	$-\frac{g^2(p_1+p_4)(p_2+p_3)}{m_{D^*}^2}-\frac{g^2(p_1+p_3).(p_2+p_4)}{m_{K^*}^2}$	$-12.8g^{2}$
2	$D_s^* \rho \to D_s^* \rho$	0	0	0

Table 4: Tree level amplitudes for D^*K^* , $D_s^*\rho$ in I = 1. Last column: ($V_{\text{th.}}$) for C = 1, S = 1 and I = 1.

The interaction is attractive for both I = 0 and I = 1, favoring a $J^+ = 2^+$ state. (see PRD82 (2010) Molina, Branz, Oset, for I = 0)

New flavor exotic tetraquark (C = 1, S = -1)

Two-meson loop function

$$\begin{split} G_i(s) &= \frac{1}{16\pi^2} \bigg(\alpha + \mathrm{Log} \frac{M_1^2}{\mu^2} + \frac{M_2^2 - M_1^2 + s}{2s} \mathrm{Log} \frac{M_2^2}{M_1^2} \\ &+ \frac{p}{\sqrt{s}} \bigg(\mathrm{Log} \frac{s - M_2^2 + M_1^2 + 2p\sqrt{s}}{-s + M_2^2 - M_1^2 + 2p\sqrt{s}} + \mathrm{Log} \frac{s + M_2^2 - M_1^2 + 2p\sqrt{s}}{-s - M_2^2 + M_1^2 + 2p\sqrt{s}} \bigg) \bigg) \;, \end{split}$$

Bethe-Salpeter

$$T = [\hat{1} - VG]^{-1}V$$

The states with $J^P = \{0,2\}^+$ decay into $D\bar{K}$

 $\mathcal{L}_{V\!PP} = - \textit{ig} \langle [P, \partial_{\mu} P] V^{\mu}
angle$

 $F(q) = e^{((p_1^0 - q^0)^2 - \vec{q}^2)/\Lambda^2}$ Navarra, PRD65(2002) with $q_0 = (s + m_D^2 - m_K^2)/2\sqrt{s}$.

15

New flavor exotic tetraquark (C = 1, S = -1)

Recent work: Molina, Oset PLB811 2020, $\alpha = -1.474$, $\Lambda = 1300$. Evaluation of the decay width of the $J^P = 1^+$ state

$$\mathcal{L} = \frac{iG'}{\sqrt{2}} \epsilon^{\mu\nu\alpha\beta} \langle \delta_{\mu} V_{\nu} \delta_{\alpha} V_{\beta} P \rangle$$

$$\mathcal{L}_{VPP} = -ig \langle [P, \partial_{\mu} P] V^{\mu} \rangle$$

$$\vec{k}^{*(p)}$$

$$\vec{k}^{*(p)}$$

 $D^*(n_i)$

 $D^{*}(p_{\alpha})$

Amplitude:

$$-it = \frac{9}{2} (G'gm_{D^*})^2 \int \frac{d^4q}{(2\pi)^4} \epsilon^{ijk} \epsilon^{i'j'k'} \left(\frac{1}{(p_1 - q)^2 - m_{\pi}^2 + i\epsilon}\right)^2 \frac{1}{q^2 - m_{D^*}^2 + i\epsilon} \frac{1}{(p_1 + p_2 - q)^2 - m_K^2 + i\epsilon} \times \epsilon^{j(1)} \epsilon^{m(2)} \epsilon^{k(3')} q^i q^m q^{m'}(1) \epsilon^{m'(4)} \epsilon^{k'(3')} q^{i'} q^{m'} F^4(q)$$
(5)

$$\begin{split} t &= \frac{9}{2} (G' g m_{D^*})^2 \int \frac{d^3 q}{(2\pi)^3} (\delta_{ij'} \delta_{jj'} - \delta_{ij'} \delta_{i'j}) \left(\frac{1}{(p_1 - q)^2 - m_\pi^2}\right)^2 \frac{1}{2\omega^*(q)} \frac{1}{2\omega(q)} \frac{1}{\sqrt{s} - \omega^*(q) - \omega(q) + i\epsilon} \\ &\times \epsilon^{j(1)} \epsilon^{m(2)} \epsilon^{j'(3)} \epsilon^{m'(4)} q^j q^m q^{i'} q^{m'} F^4(q) \end{split}$$
(6)

with $\omega^*(q) = \sqrt{m_{D^*}^2 + \vec{q}^2}, \ \omega(q) = \sqrt{m_K^2 + \vec{q}^2}, \ p_1^0 = m_{D^*}, \ q^0 = \omega^*(q).$ We use $\operatorname{Im} \frac{1}{x + i\epsilon} = -i\pi\delta(x).$

Taking now into account that,

$$\int \frac{d^3 q}{(2\pi)^3} f(\vec{q}^2) q^i q^m q^{i'} q^{m'} = \frac{1}{15} \int \frac{d^3 q}{(2\pi)^3} f(\vec{q}^2) \vec{q}^4 (\delta_{im} \delta_{i'm'} + \delta_{ii'} \delta_{mm'} + \delta_{im'} \delta_{m'i}) ,$$

one obtains,

$$4\epsilon^{j(1)}\epsilon^{m(2)}\epsilon^{j(3)}\epsilon^{m(4)} - \epsilon^{j(1)}\epsilon^{j(2)}\epsilon^{m(3)}\epsilon^{m(4)} - \epsilon^{j(1)}\epsilon^{m(2)}\epsilon^{m(3)}\epsilon^{j(4)} ,$$

which is a combination of the spin projectors, $5\mathcal{P}^{(1)} + 3\mathcal{P}^{(2)}$, zero component for J = 0 (violates parity). The imaginary part for J = 1 is,

$$\begin{split} \mathrm{Im}\,t &= -\frac{3}{2}\frac{1}{8\pi}(G'gm_{D^*})^2q^5\left(\frac{1}{(m_D^*-\omega^*(q))^2-\omega^2(q)}\right)^2\frac{1}{\sqrt{s}}F^4(q)\\ \omega(q) &= \sqrt{m_K^2+\vec{q}\,^2}; \omega^*(q) = \sqrt{m_{D^*}^2+\vec{q}\,^2}; q = \frac{\lambda^{1/2}(s,m_{D^*}^2,m_K^2)}{2\sqrt{2}} \end{split}$$

$I(J^P)$	M[MeV]	$\Gamma[MeV]$	Coupled channels	state
$0(2^{+})$	2775	38	$D^*ar{K}^*$?
$0(1^+)$	2861	20	$D^*ar{K}^*$?
$0(0^+)$	2866	57	$D^*ar{K}^*$	$T_{cs}(2900)$

Table 5: New results including the width of the D^*K channel.

Figure 2: $|T|^2$ for C = 1, S = -1, I = 0, J = 0 and J = 2.

Decay of the $T_{cs}(2900)$ to $D^*\bar{K}$

Figure 3: $|T|^2$ for C = 1, S = -1, I = 0, J = 0 and J = 1.

The $T_{c\bar{s}}(2900)$

C = 1, S = 1, I = 1 The $T_{c\bar{s}}(2900)$

Two channels: D^*K^* , $D_s^*\rho$. New results, $\alpha = -1.474$ to obtain the $T_{cs}(2900)$ state in $D^*\bar{K}^*$. We also consider both the ρ and K^* width.

Convolution due to the vector meson mass distribution

$$\tilde{G}(s) = \frac{1}{N} \int_{(M_1 - 4\Gamma_1)^2}^{(M_1 + 4\Gamma_1)^2} d\tilde{m}_1^2(-\frac{1}{\pi}) \mathcal{I}m \frac{1}{\tilde{m}_1^2 - M_1^2 + i\Gamma(\tilde{m})\tilde{m}_1} G(s, \tilde{m}_1^2, M_2^2) ,$$

with

$$N = \int_{(M_1 - 4\Gamma_1)^2}^{(M_1 + 4\Gamma_1)^2} d\tilde{m}_1^2 (-\frac{1}{\pi}) \mathcal{I}m \frac{1}{\tilde{m}_1^2 - M_1^2 + i\Gamma(\tilde{m})\tilde{m}_1} , \qquad (7)$$

where M_1 and Γ_1 are the nominal mass and width of the vector meson.

$$\tilde{\Gamma}(\tilde{m}) = \Gamma_0 \frac{q_{\text{off}}^3}{q_{\text{on}}^3} \Theta(\tilde{m} - m_1 - m_2)$$
(8)

with

$$q_{\rm off} = \frac{\lambda^{1/2}(\tilde{m}^2, m_1^2, m_2^2)}{2\tilde{m}}, \quad q_{\rm on} = \frac{\lambda^{1/2}(M_1^2, m_1^2, m_2^2)}{2M_1}.$$
 (9)

C = 1, S = 1, I = 1 The $T_{c\bar{s}}(2900)$

(1,0): $m = 2920 \text{ MeV}, \Gamma = 130 \text{ MeV}$ (1,1): $m = 2922 \text{ MeV}, \Gamma = 145 \text{ MeV}$ Exp. $m = 2908 \pm 11 \pm 20 \text{ MeV}, \Gamma = 136 \pm 23 \pm 11 \text{ MeV}$

 $(I, J) = (1, 2): m = 2835 \text{ MeV}, \Gamma = 20 \text{ MeV}$

Production of the $T_{\bar{c}s}(2900)$

 $ar{B}^0
ightarrow D_s^- D^0 \pi^+$ in B decays

The $T_{\bar{c}s}(2900)$ can be produced by means of external emission

Production of the $T_{\bar{c}s}(2900)$ in *B* decays

$$T(E) = aG(E)_{D_{s}^{*}\rho} t_{D_{s}^{*}\rho \to \bar{D}^{*}\bar{K}^{*}}(E) t_{L}(E) + b$$
(10)

where $E = M_{inv}(\pi^+D_s^-)$, and *a*, *b* are constants adjusted to reproduce the experimental data. *b* stands for the background. t_L is the amplitude for the triangle loop.

$$t_{L} = -g^{2} \int \frac{d^{3}q}{(2\pi)^{3}} (2\vec{k} + \vec{q})^{2} F(\vec{k} + \vec{q}) \frac{1}{2\omega_{K^{*}}(q)} \frac{1}{2\omega_{D^{*}}(q)} \frac{1}{2\omega_{K}(\vec{q} + \vec{k})} \\ \times \left\{ \frac{1}{P^{0} - \omega_{D^{*}}(q) - \omega_{K^{*}}(q) + i\epsilon} \frac{1}{P^{0} - \omega_{D^{*}} - k^{0} - \omega_{K}(\vec{q} + \vec{k}) + i\epsilon} - \frac{1}{P^{0} - \omega_{K^{*}}(q) - \omega_{D^{*}}(q) + i\epsilon} \frac{1}{\omega_{K^{*}}(q) + \omega(\vec{k} + \vec{q}) - k^{0} - i\epsilon} \right\}$$
(11)

Production of the $T_{\bar{c}s}(2900)$ in *B* decays

Analysis of LQCD data on DK scattering and the $D_{s0}(2317)$

Quark mass dependence of the $D(D^*)$ mesons

Heavy Hadron Chiral Perturbation Theory (HH χ PT)

E. Jenkins, NPB412 (1994)

$$\begin{split} \frac{1}{4}(D+3D^*) &= m_H + \alpha_a - \sum_{X=\pi,K,\eta} \beta_a^{(X)} \frac{M_X^3}{16\pi f^2} + \sum_{X=\pi,K,\eta} \left(\gamma_a^{(X)} - \lambda_a^{(X)}\alpha_a\right) \frac{M_X^2}{16\pi^2 f^2} \log\left(M_X^2/\mu^2\right) + c_a \\ (D^* - D) &= \Delta + \sum_{X=\pi,K,\eta} \left(\gamma_a^{(X)} - \lambda_a^{(X)}\Delta\right) \frac{M_X^2}{16\pi^2 f^2} \log\left(M_X^2/\mu^2\right) + \delta c_a \end{split}$$

 $\mu =$ 770 MeV; $g^2 =$ 0.55 MeV (Decay of the D^* meson)

$$\frac{1}{4}(D+3D^*) = m_H + f(\sigma, a, b, c, d)$$

$$(D^* - D) = \Delta + g(\Delta^{(\sigma)}, \Delta^{(a)})$$
9 parameters, but different collaborations/scale settings, 7 + 2 × 7 = 21 parameters, ~ 80 data points

ETMC, PACS, HSC, CLS, RQCD, S.Prelovsek, MILC

Quark mass dependence of the $D(D^*)$ mesons

LASSO + information criteria;

$$\chi_P^2 = \chi^2 + \lambda \sum_i^n |p_i|; \quad \text{Data} = \text{Training}(70\%) + \text{Test}(30\%)$$
 (12)

Quark mass dependence of the $D(D^*)$ mesons

27

Quark mass dependence of the $D_{s0}(2317)$ resonance in DK

Fit to the energy levels of HSC; JHEP02, 100 (2021) $T = V[1 - VG]^{-1} \Longrightarrow \tilde{T} = V[1 - V\tilde{G}]^{-1}; \quad V_{LO} = -(s - u)/2f^{2}$ $\tilde{G}(E) = \frac{1}{L^{3}} \sum_{\vec{q_{i}}} I(E, \vec{q_{i}}) , \qquad (13)$

$$\tilde{G} = G^{DR} + \lim_{q_{max} \to \infty} \left(\frac{1}{L^3} \sum_{q < q_{max}} I(E, \vec{q}) - \int_{q < q_{max}} \frac{d^3 q}{(2\pi^3)} I(E, \vec{q}) \right)$$
(14)

A. Martinez et al. PRD85 (2012)

Quark mass dependence of the $D_{s0}(2317)$ resonance in DK

 $m_{\pi} = 236 \text{ MeV}; a_t^{-1} = 5.667 \text{ GeV}; a_t M_{\eta_c} = 0.2412, M_{\eta_c} = 2986 \text{ MeV};$ $m_{\pi} = 391 \text{ MeV}; a_t^{-1} = 6.079 \text{ GeV}; a_t M_{\eta_c} = 0.2735; M_{\eta_c} = 2963 \text{ MeV};$

Conclusions

Conclusions

- The X₀(2866) or T_{cs}(2900) is compatible with a D^{*}K^{*} resonance decaying to DK. Its spin partners can be also searched for in B decays. Proposed reactions to observe the 1⁺ state: B⁰ → D^{*+}D^{*0}K⁻, Phys. Lett. B832 (2022), Dai, Molina, Oset, B⁰ → D^{*+}K⁻K^{*0}, Phys. Rev. D105 (2022); and the 2⁺ state: B⁺ → D⁺D⁻K⁺, Phys. Lett. B833 (2022), Bayar and Oset.
- The $T_{c\bar{s}}(2900)$ is more likely to be a failed bound state, or cusp structure around the D^*K^* , $D_s^*\rho$ thresholds. The width of the ρ is responsible for most of its width. There should be a bound state for $J^P = 2^+$ with mass of around 2830 MeV and width 20 MeV.
- The study of the pion mass dependence of the $D_{s0}(2317)$ supports the DK molecular picture