Machine learning for hadron spectroscopy

4th Workshop on Future Directions in Spectroscopy Analysis Łukasz Bibrzycki Pedagogical University of Krakow on behalf of the JPAC collaboration

Types of ML models

Application of discriminative models

See Phys.Rev.D 105 (2022) 9, L091501

L. Ng(Florida State U.) Ł. Bibrzycki(Pedagogical U., Cracow) J. Nys(Ecole Polytechnique, Lausanne) C. Fernandez-Ramirez(Mexico U., ICN) A. Pilloni(Messina U. and INFN, Catania and INFN, Rome) V. Mathieu(ICC, Barcelona U. and Madrid U.) A.J. Rasmusson(Indiana U.) A.P. Szczepaniak (Jefferson Lab and Indiana U., CEEM)

Outline

- Motivation and Physical model
- ML model
- Feature refinement
- Model predictions and explanation
- Going beyond discriminative model
- Summary

Motivation

Plethora of potentially multiquark states observed in last decade

JPAC fit C. Fernandez-Ramirez Phys.Rev.Lett. 123 (2019) 9, 092001

- There is a close relation between QCD spectrum and the analytic structure of amplitudes (production thresholds \rightarrow branch points, resonances/bound states \rightarrow poles)
- Currently this relationship is impossible to derive from first principles of QCD (top down approach)
- One can utilize the general properties of amplitudes, like unitarity, analyticity or crossing symmetry, but then model parameters must be derived from data bottom up approach

Discrepant interpretations of the $P_c(4312)$ nature

Molecule Du et al., 2102.07159 Virtual C. F-R et al. (JPAC), Phys. Rev. Lett. 123, 092001 (2019)

Double-triangle (w. complex coupl. in the Lagrangian) *Nakamura, Phys. Rev. D* 103, 111503 (2021)

Single triangle (ruled out) *LHCb, Phys. Rev. Lett. 122,* 222001 (2019)

We want to use ANN to:

- \bullet Go beyond the standard χ^2 fitting
- Specific questions:
 - Can we train a neural network to analyze a line shape and get as a result the probability of each possible dynamical explanation ?
 - If possible, what other information can we gain by using machine learning techniques?
- First attempts to use Deep neural networks as model classifiers for hadron spectroscopy:

Sombillo et al., 2003.10770, 2104.141782, 2105.04898

Physics model

 J/ψ

- P_c(4312) has a well defined spin and appears in single partial wave
- Background contributes to all other waves
- $\Sigma_{c}^{+}\overline{D}^{0}$ channel opens at 4.318 GeV -coupled channel problem

Intensity

$$\frac{dN}{d\sqrt{s}} = \rho(s) \left[|P_1(s)T_{11}(s)|^2 + B(s) \right]$$

where

 Λ_b^0

$$\begin{split} \rho(s) &= pqm_{\Lambda_b} \quad \text{phase space} \\ p &= \lambda^{\frac{1}{2}}(s, m_{\Lambda_b}^2, m_K^2)/2m_{\Lambda_b}, \ q &= \lambda^{\frac{1}{2}}(s, m_p^2, m_{\psi}^2)/2\sqrt{s} \end{split}$$

$$P_1(s) = p_0 + p_1 s$$
 production term $B(s) = b_0 + b_1 s$ background term

Physics model

Coupled channel amplitudes

$$T_{ij}^{-1} = M_{ij} - ik_i \delta_{ij}$$
 where $k_i = \sqrt{s - s_i}$
 $s_1 = (m_p + m_{J/\psi})^2$ and $s_2 = (m_{\Sigma_c^+} + m_{\bar{D}^0})^2$

• Unitarity implies that M_{ij} is free from singularities near thresholds s_1 and s_2 so that it can be Taylor expanded *Frazer, Hendry Phys. Rev. 134 (1964)*

$$M_{ij}(s) = m_{ij} - c_{ij}s$$

• In principle the off-diagonal term of the amplitude $P_2(s)T_{21}$ could be included but we are interested in the analytical structure ("denominator") – so it's effect can be absorbed to the background and production terms.

Physics model – final version

See C. Fernandez-Ramirez Phys.Rev.Lett. 123 (2019) 9, 092001

Finally we use the scattering length approximated amplitude as the basis for ML model $T_{11} = \frac{m_{22} - ik_2}{(m_{11} - ik_1)(m_{22} - ik_2) - m_{12}^2}$

7 model parameters in total: *m*₁₁, *m*₂₂, *m*₁₂, *p*₀, *p*₁, *b*₀, *b*₁.

ML model – general idea

- From the physical model we produce:
 - Sample intensities (computed in 65 energy bins) – produced with randomly chosen parameter samples – **examples**
 - For each parameter sample we are able to compute the target class – one of the four: b|2, b|4, v|2, v|4
 - Symbolically:

 $K: \{ [I_1, \dots, I_{65}](m_{11}, m_{22}, m_{12}, p_0, p_1, b_0, b_1) \} \to \{ b|2, b|4, v|2, v|4 \}$

ML model – MLP

Layer	Shape in	Shape out
Input		(B, 65)
Dense	(B, 65)	(B, 400)
Dropout(p=0.2)	(B, 400)	(B, 400)
ReLU	(B, 400)	(B, 400)
Dense	(B, 400)	(B, 200)
Dropout(p=0.5)	(B, 200)	(B, 200)
ReLU	(B, 200)	(B, 200)
Dense	(B, 200)	(B, 4)
Softmax	(B, 4)	(B, 4)

Training dataset preparation:

- Parameters were uniformly sampled from the following ranges: b₀ = [0; 700], b₁ = [-40; 40], p₀ = [0; 600], p₁ = [-35; 35], M₂₂ = [-0.4; 0.4], M₁₁ = [-4; 4], M₁₂² = [0; 1.4]
- 2. The signal was smeared by convolving with experimental LHCb resolution:

$$I(s) = \int_{m_{\psi}+m_{p}}^{m_{\Lambda_{b}}-m_{K}} I(s')_{\text{theo}} \exp\left[-\frac{(\sqrt{s}-\sqrt{s'})^{2}}{2R^{2}(s)}\right] d\sqrt{s'} / \int_{m_{\psi}+m_{p}}^{m_{\Lambda_{b}}-m_{K}} \exp\left[-\frac{(\sqrt{s}-\sqrt{s'})^{2}}{2R^{2}(s)}\right] d\sqrt{s'},$$
$$R(s) = 2.71 - 6.56 \times 10^{-6-1} \times \left(\sqrt{s}-4567\right)^{2}$$

3.To account for experimental encertainty the 5% gaussian noise was added

ML model - training

900

850

800

750

700 650

600 550

500

4.26

- Input examples (efect of energy smearing and noise):
- Computing target classes:
 - m₂₂>0 bound state, m₂₂<0 virtual state
 - To localize the poles on Riemann sheets we need to find zeros of the amplitude denominator in the momentum space:
 p₀ + p₁ q + p₂ q² + p₃ q³ + q⁴ = 0

4 28

v8 no noise, conv

v8 no noise, unconv

436

800

700

600

500

426

4.28

4.30

Req

4.38

with

h
$$p_0 = (s_1 - s_2) m_{22}^2 - (m_{12}^2 - m_{11}m_{22})^2$$

 $p_1 = 2 (s_1 - s_2) m_{22} + 2m_{11} (m_{12}^2 - m_{11}m_{22})$
 $p_2 = -m_{11}^2 + m_{22}^2 + s_1 - s_2$
 $p_3 = 2m_{22}$
Then poles appear on sheets defined with (η_1, η_2) pairs:
(-,+) - II sheet
 $\eta_1 = \text{Sign Re} \left(\frac{m_{12}^2}{m_{22} + q} - m_{11} \right) \eta_2 = \text{Sign}$

v8 noise, unconv

4.38

4.36

ML model – training results

Feature refinement

- Dimensionality reduction -Principal Component analysis
- Over 99% of the variance can be explained with just 6 features
- Experimental data projected onto principal components are well encompassed within the training dataset

Model predictions – statistical analysis

- The distribution of the target classes was evaluated with
 - the bootstrap (10 000 pseododata based on experimental mean values and uncertainties) and
 - dropout (10 000 predictions from the ML model with a fraction of weights randomly dropped out)

Model explanation with SHAP

Shapley values and Shapley Additive Explanations

Shapley, Lloyd S. "Notes on the n-Person Game -- II: The Value of an n-Person Game" (1951)

Model explanation with SHAP

- By making an assotiation:
 - Member of a coalition \rightarrow Feature (intensity in the energy bin)
 - Game → Function that generates classification/regression result
 - Gain → Prediction
 - We define the Shapley values for features
- Caveats:
 - A number of possible coalitions grows like 2[№]
 - Prohibitively expensive computationally (NP-hard)

Solution: Shapley additive explanations (Lundberg, Lee, arXiv:1705.07874v2, 2017)

Model explanation with SHAP

Going beyond discriminative model (work in progress under A(I)DAPT collaboration)

Marco Battaglieri, INFN Alessandro Pilloni, University of Messina/JPAC Tommaso Vittorini, University of Tor Vergata Gloria Montana, University of Barcelona Łukasz Bibrzycki, Pedagogical University of Krakow/JPAC Nobuo Sato, JLab Yaohang Li, Old Dominion University Tereq Alghamdi, Old Dominion University Hua Liu, Old Dominion University

Going beyond discriminative model

- Generative models learn to generate data instances drawn from pdf $\rho(x_1,...,x_n)$, which in turn is learnt from data
- Physically pdf-s are related to amplitudes of hadronic processes

$$\rho(x_1, ..., x_n) \sim |A(x_1, ..., x_n)|^2$$

- One can think about obtaining the amplitude from the pdf obtained from the generative model
- This problem is, unfortunately, ill posed problem
- Can additional conditions (unitarity, dispersion relations) cure the situation ?

π^{0} photoproduction

• Consider the model for $\gamma p
ightarrow p \pi^0$

$$\frac{d\sigma}{d\Omega} \propto \frac{p_f}{p_i s} \frac{3 \left| H_{3/2} \right|^2 + 5 \left| H_{1/2} \right|^2 - 3\cos 2\theta \left(\left| H_{3/2} \right|^2 - \left| H_{1/2} \right|^2 \right)}{(m_\Delta^2 - s)^2 + \Gamma_\Delta^2 m_\Delta^2}$$

 Putting physical values of model parameters we obtain the 2d pdf in (s, cosθ) variables

(Machine) Learning pdf-s

- Normalizing flows are the ML architectures designed to learn pdf-s from data
- Basic idea:
 - Let *X* and *Z* be *n*-dimensional random vectors and
 - $f: R^n \to R^n$ be the mapping between them so that X = f(Z) and $Z = f^{-1}(X)$ (f must be invertible)

• Then
$$\rho_X(x) = \rho_Z(f^{-1}(x)) \left| \frac{\partial f^{-1}(x)}{\partial x} \right|$$

(Machine) Learning pdf-s

In practice

• *f* is implemented as a composition of several functions parametrized by neural network layers (flows) – activation functions must be invertible

• Z is usually normal disributed, so we train the network to map unknown (either model or experimental) input distribution into a Gaussian noise

Having trained the network (to parametrize f) we use it's invertibility to sample "unknown" distribution by feeding Gaussian noise.

Results

A sample of 10K events from the model distrubution

Histogrammed model sample

A sample of 10K[°] events generated by the normalizing flow

Histogrammed normalizing flow sample

Projection to s - NF 120000 100000 60000 40000 0 12 14 16 18 20 22

40000

30000

- Histograms projected in s and in cos θ
- Some discrepancies visible but they can be reduced by hyperparameter fine-tuning

- This was an easy part obtaining the amplitudes requires imposing
- constraint of unitarity, eg. in the form of dispersion relations. It is still ahead of us.

Summary

- Classification of P_c(4312) poles:
 - Rather than testing the single model hypothesis with χ^2 , we obtained the probabilities of four competitive pole assignments for the P_c(4312) state
 - By the analysis of the SHAP values we obtained an *ex post* justification of our scattering length approximation
- Learning pdf-s (and possibly the amplitudes) with normalizing flows
 - With normalizing flows one can learn pdf-s from models (not a big deal) or experimental data(bigger deal)
 - Physical constraints of unitarity etc. have to be imposed on training in order to go from pdf-s to amplitudes.

Thank you !

Back-up slides

Caveats (on using MLPs)

- Even though we want to recognize ordered sets (series) of data the MLP rather recognizes just sets
- One can permute the data arbitrarily and get basically the same classification quality
- Provided the prediction dataset is permuted accordingly

CNN as an alternative

- Convolution neural network is able to detect local patterns
- Unfortunately it does it in fixed location (it's not translationally invariant)
- There are some (partial) remedies

however: V. Biscione, J. S. Bowers, "Convolutional Neural Networks Are Not Invariant to Translation, but They Can Learn to Be" arXiv:2110.05861v1

32 32 32 32 Conv1D Conv1D

Questions to be addressed

Going beyond the limited generalization power - applying the method for larger class of resonances, described by the same physics, eg. a₀/f₀(980) or other resonances located near thresholds

- Eg. we believe that these two resonances can be described by the same physics
 - MLPs and CNNs require inputs of the same size rebinning required (but also kinematics and resonance parameters change: masses, widths, thresholds, phase spaces,...)
 - Alternatively we can use the length of the signal as part of the input information for RNNs
 - Difference between the models is not always as clear as above (different Riemann sheets) need for model selection criteria (discussed already on Wednesday)

