Computing the polarimeter vector field of Λ_c^+ using its dominant hadronic mode

<u>Remco de Boer</u>², Mikhail Mikhasenko¹, Miriam Fritsch² on behalf of the LHCb collaboration

> ¹ ORIGINS Excellence Cluster, Munich, Germany ² Ruhr University Bochum, Germany

> > November 16th, 2022

4th Workshop on Future Directions in Spectroscopy Analysis, Jefferson Lab

IHCh

Polarimetry of

 $\Lambda_c \rightarrow p K \pi$ Remco de Boer

Two novelties from this study:

- \blacksquare Aligned polarimeter vector field for $\Lambda_c^+ \to p K^- \pi^+$
- 2 Fast computations with symbolic amplitude models

What can we learn by measuring polarization of hadrons?

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

Theory

Importance of polarization

Polarimetry

Implementation

Symbolic models Self-documenting workflow Data input Cross-checks

Results

- Polarimeter fie Uncertainties
- Averaged polarimeter vector
- Data availability

Summary

 $\label{eq:polarization} \textit{Polarization} = \textit{preferred orientation of the spin of a particle in space}$

- Mechanism of quark hadronization [Brambilla:2010cs, Faccioli:2010kd, Butenschoen:2012px]
- BSM searches with $\Lambda_b^0 \to \Lambda_c^+ \ell^- \nu$
 - [Konig:1993wz, Dutta:2015ueb, Shivashankara:2015cta, Li:2016pdv, Li:2016pdv, Datta:2017aue, Ray:2018hrx, DiSalvo:2018ngq, Penalva:2019rgt, Ferrillo:2019owd]
 - E.g. sign of longitudinal polarization of Λ_c^+ provides a test for left-handedness of $b \to c$ current
- BSM searches with measurement of EDM with charmed mesons (SELDOM)
- Hadron spectroscopy, extending decay chains (next slide)
 - $\checkmark \Lambda^0_b
 ightarrow J\!/\psi p K$ with $J\!/\psi
 ightarrow \mu^+\mu^-$
 - $\checkmark \ \mathfrak{B}
 ightarrow J/\psi \overline{p} \Lambda$ with $\Lambda
 ightarrow p \pi^-$
 - ? $\mathfrak{B}^+ \to \Lambda_c^+ \overline{\Lambda}_c^- K^+$ with $\Lambda_c^+ \to p K^- \pi^+$
 - ? $\Omega_b^- \to \Xi_c^+ \pi^- K^-$ with $\Xi_c^+ \to p K^- \pi^+$

LHCb

What can we learn by measuring polarization of hadrons?

Measuring polarization – two-body decays

Decay of a fermion is special – baryon in the final state averages angular distributions

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

Polarimetry

Example: $\Lambda \rightarrow p\pi^ H_{\lambda_A,\lambda_p} = \langle p, \lambda_p; \pi^- | T_{\text{weak}} | \Lambda, \lambda_A \rangle$

- $P = |\vec{P}|$ polarization, for J = 1/2, there are just tree d.o.f.
- α is the **asymmetry parameter** (analyzing power of the decay)

Appears only when both PV and PC

$$\alpha = \frac{|H_+|^2 - |H_-|^2}{|H_+|^2 + |H_-|^2} = -\frac{2\text{Re}(H_S^*H_P)}{|H_S|^2 + |H_P|^2}$$

S-wave – parity violating (PV); P-wave – parity conserving (PC): $\Lambda(i^P = 1/2^+) \rightarrow p(i^P = 1/2^+) \pi^-(i^P = 0^-)$

Measuring polarization – two-body decays

Decay of a fermion is special – baryon in the final state averages angular distributions

Measuring polarization – polarimetry in τ decays

Tsai:1971vv, Kuhn:1991cc, Davier:1992nw, Kuhn:1995nn, Kuhn:1982di, Kuhn:1993ra, Hagiwara:1989fn]

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

Polarimetry

$$\frac{\Phi}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\Phi} \propto 1 + \vec{P} \cdot \vec{h} \,. \label{eq:phi_eq}$$

 \vec{P} is a polarization of τ

• \vec{h} is a **polarimeter vector**

Polarimeter vector of the τ lepton in the SM

Idea: similar relation for τ lepton decays,

- Direction depends on the final state, e.g.
 - for $\tau^- \to \pi^- \nu_\tau$ decay, $\vec{h} \uparrow \uparrow \vec{p}_{\pi^-}$ for $\tau^- \to \ell \nu_\tau \overline{\nu_\ell}$ decay, $\vec{h} \uparrow \uparrow \vec{p}_{\overline{\nu_\ell}}$

• Unit vector:
$$|\vec{h}| = 1$$
.

Measuring polarization – general multibody decays?

 \rightarrow Dalitz-Plot Decomposition (DPD)

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

Polarimetry

Factorization of variables describing dynamics and polarization [JPAC:2019ufm]:

$$T_{\nu_{0},\{\lambda\}}(\phi,\theta,\chi;\tau) = \sum_{\nu} D^{1/2}_{\nu_{0},\nu}(\phi,\theta,\chi) A_{\nu,\{\lambda\}}(\tau)$$

Polarization d.o.f.

- Euler angles in active ZYZ convention
- rotation of the system as rigid body -
- polarization affects angular distribution

Dynamic d.o.f.

- Mandelstam variables of the subsystems
- describes resonances in the decay

Model-agnostic representation of the decay rate

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

Theory

Importance of polarization

Implementatio

Symbolic models Self-documenting workflow Data input Cross-checks

Results

Polarimeter fiel

Averaged polarimete vector

Data availability

Summary

Using the SU(2) \rightarrow SO(3) homomorphism, we get our polarized master formula,

$$\left|\mathcal{M}(\phi,\theta,\chi,\tau)\right|^{2} = I_{0}(\tau) \left(1 + \sum_{i,j=1}^{3} P_{i}R_{ij}(\phi,\theta,\chi)\alpha_{j}(\tau)\right),$$

where

- $I_0(\tau)$ is the unpolarized intensity
- $R(\phi, \theta, \chi) = R_Z(\phi)R_Y(\theta)R_Z(\chi)$ defines the decay plane orientation.
- $\alpha(\tau)$ is the aligned polarimeter vector field,

$$\vec{\alpha}(\tau) = \sum_{\nu',\nu,\{\lambda\}} A^*_{\nu',\{\lambda\}} \vec{\sigma}_{\nu',\nu} A_{\nu,\{\lambda\}} / I_0(\tau) \,.$$

It is specific for the decay, does not depend on the production mechanism.

Model-agnostic representation of the decay rate

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

Theory

Importance of polarization

Implementation

Symbolic models Self-documenting workflow Data input Cross-checks

Results

Polarimeter fiel

Averaged polarimete vector

Data availability

Summary

Using the SU(2) \rightarrow SO(3) homomorphism, we get our polarized master formula,

$$\left|\mathcal{M}(\phi,\theta,\chi,\tau)\right|^{2} = I_{0}(\tau) \left(1 + \sum_{i,j=1}^{3} \mathbf{P}_{i} R_{ij}(\phi,\theta,\chi) \alpha_{j}(\tau)\right),$$

This study

where

• $I_0(\tau)$ is the unpolarized intensity

■ $R(\phi, \theta, \chi) = R_Z(\phi)R_Y(\theta)R_Z(\chi)$ defines the decay plane orientation.

• $\alpha(\tau)$ is the aligned polarimeter vector field,

1 provide
$$I_0(\tau)$$
 and $\vec{\alpha}(\tau)$
2 measure $|\mathcal{M}(\phi, \theta, \chi, \tau)|^2$
3 get \vec{P} from fit

$$\vec{\alpha}(\tau) = \sum_{\nu',\nu,\{\lambda\}} A^*_{\nu',\{\lambda\}} \vec{\sigma}_{\nu',\nu} A_{\nu,\{\lambda\}} / I_0(\tau) \,.$$

It is specific for the decay, does not depend on the production mechanism.

Another application: extending amplitude models Example: $B^+ \rightarrow \Lambda_c^+ \overline{\Lambda}_c^- K^+$, $\Lambda_c \rightarrow pK\pi$

Polarimetry of $A_c \rightarrow p K \pi$ Remco de Boer

Polarimetry

Normally, without polarization taken into account:

$$I\left(m_{\Lambda_{c}^{+}K^{+}}^{2}, m_{\bar{\Lambda}_{c}^{-}K^{+}}^{2}\right) = \sum_{\nu_{0},\bar{\nu}_{0}} \left|O_{\nu_{0},\bar{\nu}_{0}}^{B}(m_{\Lambda_{c}^{+}K^{+}}^{2}, m_{\bar{\Lambda}_{c}^{-}K^{+}}^{2})\right|^{2}$$

Physics motivation

• exotic structures in
$$\Lambda_c^+ \overline{\Lambda}_c^-$$

• studies of Ξ_c^{**} in $\Lambda_c^+ K$
[BaBar:2007xtc, Belle:2017jrt,
Belle:2018yob, LHCb:2022yns]

Results

Polarimeter fiel

Uncertainties

Averaged polarimete vector

Data availability

Summary

Another application: extending amplitude models Example: $B^+ \rightarrow \Lambda_c^+ \overline{\Lambda}_c^- K^+$, $\Lambda_c \rightarrow pK\pi$

Polarimetry of $\Lambda_c \rightarrow pK\pi$ Remco de Boer

Polarimetry

Normally, without polarization taken into account:

$$I\left(m_{A_{c}^{+}K^{+}}^{2},m_{\bar{A}_{c}^{-}K^{+}}^{2}\right) = \sum_{\nu_{0},\bar{\nu}_{0}} \left|O_{\nu_{0},\bar{\nu}_{0}}^{B}(m_{A_{c}^{+}K^{+}}^{2},m_{\bar{A}_{c}^{-}K^{+}}^{2})\right|^{2}$$

Physics motivation

• exotic structures in
$$\Lambda_c^+ \bar{\Lambda}_c^-$$

• studies of Ξ_c^{**} in $\Lambda_c^+ K$

[BaBar:2007xtc, Belle:2017jrt, Belle:2018yob, LHCb:2022vns]

$$\begin{split} I\left(m_{A_c^+K^+}^2, m_{\bar{A}_c^-K^+}^2; \phi, \theta, \chi, m_{pK^-}^2, m_{K^-\pi^+}^2; \bar{\phi}, \bar{\theta}, \bar{\chi}, m_{\bar{p}K^+}^2, m_{K^+\pi^-}^2\right) = \\ \sum_{\nu_0, \bar{\nu}_0, \nu, \bar{\nu}} \sum_{\nu'_0, \bar{\nu}'_0, \nu', \bar{\nu}'} O_{\nu'_0, \bar{\nu}'_0}^{B*}(m_{A_c^+K^+}^2, m_{\bar{A}_c^-K^+}^2) O_{\nu_0, \bar{\nu}_0}^B(m_{A_c^+K^+}^2, m_{\bar{A}_c^-K^+}^2) \end{split}$$

$$\times D^{1/2*}_{\nu'_{0},\nu'}(\phi,\theta,\chi)D^{1/2}_{\nu_{0},\nu}(\phi,\theta,\chi)X^{\Lambda^{+}_{c}}_{\nu',\nu}(m^{2}_{pK^{-}},m^{2}_{K^{-}\pi^{+}}) \\ \times D^{1/2*}_{\bar{\nu}'_{0},\bar{\nu}'}(\bar{\phi},\bar{\theta},\bar{\chi})D^{1/2}_{\bar{\nu}_{0},\bar{\nu}}(\bar{\phi},\bar{\theta},\bar{\chi})X^{\bar{\Lambda}^{-}_{c}}_{\bar{\nu}',\bar{\nu}}(m^{2}_{pK^{+}},m^{2}_{K^{+}\pi^{-}})$$

$$\overline{X_{\nu',\nu}(\tau)} = \frac{I_0(\tau)}{\frac{I_0(\tau)}{2} \left(1 + \vec{\alpha}(\tau) \cdot \vec{\sigma}^P\right)_{\nu',\nu}}$$

No need to fit these d.o.f.

Polarimeter provides 10 additional degrees of freedom:

Polarimetry of $\Lambda_c \rightarrow pK\pi$

Remco de Boer

Theory

Importance of polarization

Implementatio

Symbolic models Self-documenting workflow Data input Cross-checks

Results

Polarimeter field Uncertainties Averaged polarime vector

Data availability

Summary

Can the dynamic variables au be integrated over, i.e disregarded in the analysis?

$$\frac{8\pi}{\Gamma} \frac{\mathrm{d}^3\Gamma}{\mathrm{d}\phi\,\mathrm{d}\cos\theta\,\mathrm{d}\chi} = 1 + \sum_{i,j=1}^3 P_i R_{ij}(\phi,\theta,\chi)\overline{\alpha}_j\,,$$

where $\vec{\alpha}$ is averaged aligned polarimeter vector.

Advantage / Disadvantage

- + Only need know three numbers in order to determine polarization.
- Uncertainty on \vec{P} with averaged $\vec{\alpha}$ is worse than with the full $\vec{\alpha}(\tau)$ field. [Davier:1992nw]

Analysis strategy

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

- Theory
- Importance of polarization Polarimetry

Implementation

Symbolic models Self-documenting workflow Data input Cross-checks

Results

- Polarimeter field
- Averaged polarimeter vector
- Data availability
- Summary

- Implement $\Lambda_c^+ \rightarrow p K^- \pi^+$ models from [LHCb-PAPER-2022-002] with DPD
- \blacksquare Compute $\vec{\alpha}$ for every point of the $pK^-\pi^+$ Dalitz plot
- Propagate uncertainties of the angular analysis

Results

Strategy

- Four distributions I_0 , α_x , α_y , and α_z , computed on a grid of $m_{pK} \times m_{\pi K}$
- Statistical and systematic uncertainties for each grid point
- Averaged polarimeter vector values $\overline{\alpha}_x$, $\overline{\alpha}_y$, and $\overline{\alpha}_z$
- \blacksquare Proved loss of precision when using the averaged $\overrightarrow{\alpha}$ vector
- \blacksquare Example of how to use these results, e.g. CPV properties of $\vec{\alpha}$

Implementation

Cross-check in two programming languages

Polarimetry of $A_c \rightarrow pK\pi$

Remco de Boer

Theory

Importance of polarization Polarimetry

Implementation

Symbolic models Self-documenting workflow Data input Cross-checks

Results

Polarimeter fiel Uncertainties

Averaged polarimete vector

Data availability

Summary

This analysis has been performed in two languages:

COMPWA symbolic amplitude models

Both implementations have been carefully documented on an interactive webpage Next slides

A new technique: symbolic amplitude models

Polarimetry of $\Lambda_{c} \rightarrow p K \pi$

Remco de Boer

Theory

Importance of polarization Polarimetry

Implementatio

Symbolic models

Self-document workflow Data input Cross-checks

Results

Polarimeter field Uncertainties Averaged polarimet vector Data availability

Summary

The Python implementation follows a new workflow that is facilitated by packages from the ComPWA Project (compwa-org.rtfd.io):

- Formulate amplitude model symbolically with a Computer Algebra System
- Use that symbolic expression as template to a computational back-end, such as a differentiable programming framework
 We selected JAX as the fastest back-end

രം

A new technique: symbolic amplitude models

 $\frac{2}{c}(s-(m_1-m_2)^2)(s-(m_1+m_2)^2)$

രം

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

Theory

Importance of polarization Polarimetry

mplementatio

Symbolic models Self-documenting workflow Data input Cross-checks

Results

Polarimeter field Uncertainties

Averaged polarimeter vector

Data availability

Summary

Advantages of this workflow:

- Computational implementation is outsourced to fast, optimized back-ends from the Machine Learning and data science community
- Out-of-the-box GPU and multi-threading support
- Very easy to implement other parametrizations without having to worry about performance
- CAS simplifications result in performance boosts
- Symbolic amplitude models result in a self-documenting workflow

Works especially well for large computational models

Optional: **fit** with iminuit, **c**.....

Living documentation

Maintaining reproducible and understandable analysis results

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

Theory

mportance of polarization Polarimetry

mplementatio

Symbolic models Self-documenting

workflow Data input

Cross-checks

Results

Polarimeter field Uncertainties Averaged polarimeter vector Data availability

Self-documenting workflow

Our analysis results are automatically rendered as static webpages from Jupyter and Pluto notebooks: lc2pkpi-polarimetry.docs.cern.ch (CERN SSO until on arXiv)

The Python and Julia dependencies are pinned, so that the analysis is **fully reproducible** in around 2 hours

Polarimetry $\Lambda_c \rightarrow p \ K \ \pi$

Q Search the docs ...

1. Nominal amplitude model

2. Cross-check with LHCb data

3. Intensity distribution 4. Polarimeter vector field

5. Uncertainties

- 6. Average polarimeter per resonance
- 7. Appendix

7.1. Dynamics lineshapes

- 7.2. DPD angles
- 7.3. Phase space sample
- 7.4. Alignment consistency

7.5. Benchmarking

7.6. Serialization

7.7. Amplitude model with LScouplings

- 7.8. SU(2) → SO(3) homomorphism
- 7.9. Determination of polarization

~

~

- 8. Bibliography
- 9. API 9.1. amplitude 9.2. lhcb 9.3. data 9.4. decay

= * CO±	i≣ Contents
The full intensity of the amplitude model is obtained by summing the following aligned amplitude over all helicity values λ_i in the initial state 0 and final states 1, 2, 3:	1.1. Resonances and LS- scheme 1.2. Amplitude 1.2.1. Spin-alignment amplitude
<pre>model_choice = 0 amplitude_builder = load_model_builder(model_the"/data/model-definitions.yaml", particle_definitions:particles, model_id=model_choice,) model = amplitude_builder.formulate() </pre>	1.2.2. Sub-system amplitudes 1.3. Parameter definitions 1.3.1. Helicity coupling values 1.3.2. Non-coupling parameters
Show code cell source	

 $\sum_{i=1}^{\lambda_{i}/2} \sum_{j=1}^{\lambda_{i}/2} A^{1}_{\lambda_{0}^{i},\lambda_{1}^{i}} d^{\frac{1}{2}}_{\lambda_{1}^{i},\lambda_{1}} \left(\zeta_{1(1)}^{1}\right) d^{\frac{1}{2}}_{\lambda_{0},\lambda_{0}^{i}} \left(\zeta_{1(1)}^{0}\right) + A^{2}_{\lambda_{0}^{i},\lambda_{1}^{i}} d^{\frac{1}{2}}_{\lambda_{1}^{i},\lambda_{1}} \left(\zeta_{2(1)}^{1}\right) d^{\frac{1}{2}}_{\lambda_{0},\lambda_{0}^{i}} \left(\zeta_{2(1)}^{0}\right) + A^{3}_{\lambda_{0}^{i}} A^{1}_{\lambda_{0}^{i},\lambda_{1}^{i}} d^{\frac{1}{2}}_{\lambda_{0}^{i},\lambda_{0}^{i}} \left(\zeta_{2(1)}^{0}\right) d^{\frac{1}{2}}_{\lambda_{0},\lambda_{0}^{i}} \left(\zeta_{2(1)}^{0}\right) + A^{3}_{\lambda_{0}^{i},\lambda_{0}^{i}} d^{\frac{1}{2}}_{\lambda_{0}^{i},\lambda_{0}^{i}} \left(\zeta_{2(1)}^{0}\right) d^{\frac{1}{2}}_{\lambda_{0},\lambda_{0}^{i}} \left(\zeta_{2(1)}^{0}\right) + A^{3}_{\lambda_{0}^{i},\lambda_{0}^{i}} d^{\frac{1}{2}}_{\lambda_{0}^{i},\lambda_{0}^{i}} \left(\zeta_{2(1)}^{0}\right) d^{\frac{1}{2}}_{\lambda_{0}^{i},\lambda_{0}^{i}} d^{\frac{1}{2}}_{\lambda_{0}^{i}} d^{\frac{1}{2}}_{\lambda_{0}^{i},\lambda_{0}^{i}} d^{\frac{1}{2}}_{\lambda_{0}^{i},\lambda_{0}^{i}} d^{\frac{1}{2}}_{\lambda_{0}^{i},\lambda_{0}^{i}} d^{\frac{1}{2}}_{\lambda_{0}^{i},\lambda_{0}^{i}} d^{\frac{1}{2}}_{\lambda_{0}^{i},\lambda_{0}^{i}} d^{\frac{1}{2}}_{\lambda_{0}^{i}} d^{\frac{1}{2}}_{\lambda_{0}^{i}} d^{\frac{1}{2$ $\chi'_{--1/2} \chi'_{--1/2}$

Note that we simplified notation here: the amplitude indices for the spinless states are not rendered and their corresponding Wigner-*d* alignment functions are simply 1.

The relevant $\zeta^i_{j(k)}$ angles are defined as:

Generated by the CAS

▶ Show code cell source

$$\begin{array}{rcl} \zeta_{1(1)}^{0} &=& 0\\ \zeta_{1(1)}^{1} &=& 0\\ \zeta_{2(1)}^{0} &=& - \arccos \left(\frac{-2m_{1}^{2}(-m_{1}^{2}-m_{1}^{2}+\sigma_{1})+(m_{2}^{2}+m_{1}^{2}-\sigma_{1})(m_{1}^{2}+m_{2}^{2}-\sigma_{2})}{\sqrt{\lambda(m_{0}^{2}-m_{1}^{2}-\sigma_{2})}/\lambda(\lambda(m_{0}^{2}-m_{1}^{2}-\sigma_{2})} \right) \end{array}$$

Input from LHCb

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

Theory

Importance of polarization Polarimetry

Implementation

Symbolic models Self-documenting workflow

Data input

Cross-check

Results

Polarimeter fiel

Uncertainties

Averaged polarimeter vector

Data availability

Summary

[LHCb-PAPER-2022-002] provides:

- a default amplitude model
- several alternative models with different dynamics parametrizations
- parameter values with error bars for each model

Present paper implements:

- default model and alternative models formulated with DPD [JPAC:2019ufm]
- helicity couplings have been remapped
- guaranteed identical dynamics lineshapes

Cross-checks

Visual comparison of the default amplitude model of [LHCb-PAPER-2022-002]

Cross-checks

Numerical test using code from LHCb-PAPER-2022-002

Polarimetry of $\Lambda_c \rightarrow p K \pi$

- Remco de Boer

- Cross-checks

18 / 26

- Comparison for a single point in phase space
 - resonance lineshapes,
 - helicity amplitude per resonance
- Absolute differences at most 0.01%.

Q Search the docs		=				📲 🖸 O 🛣
				Computed	Expected	Difference
Default amplitude model			ArD(1232)1	$\mathcal{H}^{\mathrm{production}}$		
Cross-check with LHCb data			A D (LOL) L	$D(1232), -\frac{1}{2}, 0$		
Intensity distribution			A++	-0.488498+0.517710j	-0.488498+0.517710j	3.11e-14
Polarimeter vector field			A+-	0.894898-0.948412j	0.894898-0.948412j	7.61e-15
Uncertainties			A-+	0.121490-0.128755j	0.121490-0.128755j	1.80e-14
Appendix	^		A	-0.222563+0.235872i	-0.222563+0.235872i	6.14e-15
Dynamics lineshapes DPD angles			ArD(1232)2	$\mathcal{H}^{\mathrm{production}}_{D(1232),rac{1}{2},0}$		
Phase space sample			A++	-0.222563+0.235872j	-0.222563+0.235872j	6.14e-15
Alignment consistency Benchmarking			A+-	-0.121490+0.128755j	-0.121490+0.128755j	1.80e-14
Serialization			A-+	-0.894898+0.948412j	-0.894898+0.948412j	7.61e-15
API	^		A	-0.488498+0.517710j	-0.488498+0.517710j	3.11e-14
amplitude	~		ArD(1600)1	$\mathcal{H}_{D(1600)}^{\mathrm{production}}$		
lhcb	~			$D(1000), -\frac{1}{2}, 0$		

IE Contents

Lineshape comparison

Amplitude comparison

SymPy expressions Numerical functions Input data Comparison table

Main analysis result

Aligned polarimeter vector field in Dalitz plot coordinates

51

Polarimetry of $A_c \rightarrow p K \pi$ Remco de Boer

Remco de Boe

Theory

Importance of polarization Polarimetry

Implementation

Symbolic models Self-documenting workflow Data input Cross-checks

Results

Polarimeter field Uncertainties Averaged polarimeter vector Data availability

Summary

 $\left|\mathcal{M}(\phi,\theta,\chi,\tau)\right|^2 =$ $\odot y$ 4.5 $\sum_{i=1}^{\infty} P_i R_{ij}(\phi, \theta, \chi) \alpha_j(\tau)$ $I_0(\tau)$ 0.84.0- K^{-} 4.5 $\vec{\alpha}(\tau)$ -0.6 $[GeV^2].$ LHCb 3.5 Preliminary $I_0(\tau$ Normalized intensity $M_{d,3.0}$ -0.4 $= m^2 (pK^-)$ -0.2> 70%5 K^{**} 2.5LHCb Λ^{**} Preliminary 0.0 Δ^{**} 0.751.751.00 1.251.500.750.501.00 1.251.501.75 $m^2 (K^- \pi^+)$ [GeV²], α_z $\sigma_1 = m^2 (K^- \pi^+) \,[\text{GeV}^2]$

Understanding the polarimeter field

Example: $\Lambda_c^+ \to \Lambda(1520) \left(\to pK^- \right) \pi^+$

Polarimetry of $\Lambda_c \rightarrow p K \pi$ $\vec{\alpha}$ of individual contributions points in z-direction Remco de Boer when the resonance is aligned with zAligned Misaligned .0 $\odot y$ 4.54.5 -1788 -0.80.8 $\overset{x}{\sigma}_{4.0}$ 8 4.0 $[GeV^2]$, [GeV²], -0.6-0.63.551 5 Polarimeter field $m^2 (pK^-)$ [0 $m^2 (pK^-)$ [3.0 -0.40.4-0.20.2LHCb LHCb Preliminary Preliminary 2.0 - $2.0 \cdot$ 10.0 10.0 0.51.0 1.50.51.0 1.5 $m^2 (K^- \pi^+)$ [GeV²], $m^2 (K^- \pi^+)$ [GeV²], α_{γ} α_{γ}

Propagation of uncertainties

[LHCb-PAPER-2022-002, p. 19]

Polarimetry of $\Lambda_c \rightarrow pK\pi$ Remco de Boer

Theory

Importance of polarization Polarimetry

Implementation

Symbolic models Self-documenting workflow Data input Cross-checks

Results

Polarimeter field

Uncertainties

Averaged polarimeter vector

Data availability

Summary

Uncertainties over the polarimeter field have two components:

1 Statistical + Systematic:

- parameter resampling of the default model using parameter error bars
- parameter error bars include both stat. and syst. uncertainties, added in quadrature
- take RMS over the resulting parameter-resampled distributions

2 Model:

- determined from all alternative models
- only central values of alternative models are considered
- take min-max of the extrema

Table 8: Default amplitude model measured fit parameters describing the A contributions.

Parameter	Central Value	S	tat. Un	c. Model Unc.	S	Syst. Unc.	
$Re \mathcal{H}_{1/2,0}^{A(1405)}$	-4.6		0.5	3.3		0.1	
$\text{Im}\mathcal{H}_{1/2.0}^{A(1405)}$	3.2		0.5	3.2		0.1	
${ m Re} {\cal H}^{A(1405)}_{-1/2.0}$	10		1	12		0	
$Im \mathcal{H}_{-1/2,0}^{A(1405)}$	2.8		1.1	3.7		0.3	
$\text{Re}\mathcal{H}_{1/2,0}^{A(1520)}$	0.29		0.05	0.12		0.01	
$\mathrm{Im}\mathcal{H}_{1/2,0}^{A(1520)}$	0.04		0.05	0.12		0.02	
${ m Re} \mathcal{H}_{-1/2.0}^{A(1520)}$	-0.16		0.14	0.69		0.03	
$\text{Im}\mathcal{H}_{-1/2.0}^{A(1520)}$	1.5		0.1	1.3		0.0	
$m^{A(1520)}$ [MeV]	1518.47		0.36	0.65		0.03	
$\Gamma^{A(1520)}$ [MeV]	15.2		0.8	1.3		0.1	
$\text{Re}\mathcal{H}_{1/2,0}^{A(1600)}$	4.8		0.5	5.0		0.1	
$\text{Im}\mathcal{H}_{1/2.0}^{A(1600)}$	3.1		0.5	3.7		0.1	
${ m Re} \mathcal{H}_{-1/2.0}^{A(1600)}$	-7.0		0.5	8.7		0.1	
$\text{Im}\mathcal{H}_{-1/2,0}^{A(1600)}$	0.8		0.6	2.0		0.2	
$Re \mathcal{H}_{1/2,0}^{A(1670)}$	-0.34		0.05	0.35		0.01	
$\text{Im}\mathcal{H}_{1/2.0}^{A(1670)}$	-0.14		0.05	0.22		0.02	
$\text{Re}\mathcal{H}_{-1/2.0}^{A(1670)}$	-0.57		0.10	0.46		0.02	
$\text{Im} \mathcal{H}_{-1/2,0}^{\Lambda(1670)}$	1.0		0.1	1.2		0.0	
${ m Re} \mathcal{H}_{1/2,0}^{A(1690)}$	-0.39		0.10	0.23		0.02	
$\text{Im}\mathcal{H}_{1/2.0}^{A(1690)}$	-0.11		0.09	0.44		0.02	
Do1/A(1690)	9.7		0.2	9.4		0.0	

Polarimetry of $\Lambda_c \rightarrow pK\pi$ Remco de Boer

Importance of polarization Polarimetry

Implementation

Symbolic models Self-documenting workflow Data input Cross-checks

Results

Polarimeter fie

Uncertainties

Averaged polarimete vector

Data availability

Summary

We compute $\vec{\alpha}^{(i)}(\tau)$ over a phase space sample, with *i* one of the parameter resamplings or one of the alterative amplitude models.

with
$$\cos \theta^{(i)} = \frac{\vec{\alpha}^{(i)} \cdot \vec{\alpha}^{\text{default}}}{|\vec{\alpha}^{(i)}||\vec{\alpha}^{\text{default}}|}.$$

Propagated uncertainties on the polarimeter field

Averaged polarimeter vector

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

Theory

Importance of polarization

Implementatio

Symbolic models Self-documenting workflow Data input Cross-checks

Results

Polarimeter fie

Uncertainties

Averaged polarimeter vector

Data availability

Summary

$$\begin{array}{lll} \overline{\alpha_x} &=& \left(-62.6 \pm 4.5^{+8.4}_{-14.8}\right) \times 10^{-3} \,, \\ \overline{\alpha_y} &=& \left(+8.9 \pm 8.9^{+9.1}_{-12.7}\right) \times 10^{-3} \,, \\ \overline{\alpha_z} &=& \left(-278.0 \pm 23.7^{+12.6}_{-40.4}\right) \times 10^{-3} \,, \\ \overline{|\alpha|} &=& \left(669.4 \pm 9.3^{+15.3}_{-10.4}\right) \times 10^{-3} \,. \quad (\approx |\overline{\alpha}| \times 2.35) \end{array}$$

Defining the averaged polarimeter vector as $\overline{\alpha}_i = \int I_0 \alpha_i d^n \tau / \int I_0 d^n \tau$, we get:

First uncertainty is stat.&syst (std.), second is model (extrema of alternative models).

Averaged polarimeter vector

Polarimetry of $\Lambda_c \rightarrow pK\pi$

Remco de Boer

Theory

Importance of polarization Polarimetry

Implementatio

Symbolic models Self-documenting workflow Data input Cross-checks

Results

Polarimeter fie

Uncertainties

Averaged polarimeter vector

Data availability

Summary

$$\begin{array}{lll} \overline{\alpha_x} &=& \left(-62.6 \pm 4.5^{+8.4}_{-14.8}\right) \times 10^{-3} \,, \\ \overline{\alpha_y} &=& \left(+8.9 \pm 8.9^{+9.1}_{-12.7}\right) \times 10^{-3} \,, \\ \overline{\alpha_z} &=& \left(-278.0 \pm 23.7^{+12.6}_{-40.4}\right) \times 10^{-3} \,, \\ \overline{|\alpha|} &=& \left(669.4 \pm 9.3^{+15.3}_{-10.4}\right) \times 10^{-3} \,. \quad \left(\approx |\overline{\alpha}| \times 2.35\right) \end{array}$$

Defining the averaged polarimeter vector as $\overline{\alpha}_i = \int I_0 \alpha_i d^n \tau / \int I_0 d^n \tau$, we get:

First uncertainty is stat.&syst (std.), second is model (extrema of alternative models).

Spherical coordinates (less correlated resampling uncertainty):

$$\begin{aligned} |\overline{\alpha}| &= (+285.1 \pm 24.0^{+37.9}_{-13.8}) \times 10^{-3} ,\\ \theta(\overline{\alpha}) &= (+0.929 \pm 0.002^{+0.017}_{-0.011}) \times \pi , \quad \text{(small error!)}\\ \phi(\overline{\alpha}) &= (+0.955 \pm 0.045^{+0.067}_{-0.028}) \times \pi . \end{aligned}$$

Data availability

Justification of the 100×100 grid

- Polarimetry of $A_c \rightarrow pK\pi$
- Remco de Boer
- Theory
- mportance of polarization Polarimetry
- Implementation
- Symbolic models Self-documenting workflow Data input Cross-checks
- Results
- Polarimeter field Uncertainties Averaged polarimet vector
- Data availability
- Summary

- $ec{lpha}(au)$ and $I_0(au)$ available in grid form:
- For propagating uncertainties:
 - grids for default model and for all alternative models
 - 100 parameter resamplings of the default model
- Grid size in $\delta m_{pK} \sim \Gamma_{\Lambda(1520)}$
- Toy fits of \vec{P} with grids of **100x100**, 200x200, 500x500 ⇒ negligible extra uncertainty

lc2pkpi-polarimetry.docs.cern.ch

- averaged-polarimeter-vectors.json (33.7 kB)
- Departmetry-field.json (67.9 MB)
- polarimetry-field.tar.gz (26.2 MB)

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

Theory

Importance of polarization Polarimetry

Implementation

Symbolic models Self-documenting workflow Data input Cross-checks

Results

- Polarimeter field
- Uncertainties
- Averaged polarimeter vector
- Data availability

Summary

- New result: computed polarimeter field for a three-body baryon decay from recent $\Lambda_c^+ \rightarrow p K^- \pi^+$ amplitude analysis by LHCb
 - \blacksquare The computed polarimeter field is offered for re-use in other analyses involving \varLambda_c
 - New approach: symbolic amplitude models with JAX as computational back-end
 - Extensive documentation on lc2pkpi-polarimetry.docs.cern.ch + analysis note show:
 - applications of the polarimeter grids
 - how to perform computations with symbolic amplitude models with the DPD formalism
 - Computational workflow an be easily adapted to other channels

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

Theory

Importance of polarization Polarimetry

Implementation

Symbolic models Self-documenting workflow Data input Cross-checks

Results

Polarimeter field

Averaged polarimete

Data availability

Summary

- New result: computed polarimeter field for a three-body baryon decay from recent $\Lambda_c^+ \to p K^- \pi^+$ amplitude analysis by LHCb
 - \blacksquare The computed polarimeter field is offered for re-use in other analyses involving \varLambda_c
 - New approach: symbolic amplitude models with JAX as computational back-end
 - Extensive documentation on lc2pkpi-polarimetry.docs.cern.ch + analysis note show:
 - applications of the polarimeter grids
 - how to perform computations with symbolic amplitude models with the DPD formalism
 - Computational workflow an be easily adapted to other channels

Welcome to contact us for (1) applying the polarimeter fields or (2) trying computations with symbolic amplitude models!

Remco de Boer

 $SU(2) \rightarrow SO(3)$ homomorphism

Polarimeter fie for baryon + vector

References

Back-up slides

LHCh

$SU(2) \rightarrow SO(3)$ homomorphism

Finding a general expression for $\vec{\alpha}(\tau)$

Polarimetry of $A_c \rightarrow p K \pi$ Remco de Boer

 $SU(2) \rightarrow SO(3)$ homomorphism The **polarized decay rate** is given by:

SU(2) is double cover of SO(3)

$$|\mathcal{M}|^{2} = \sum_{\nu_{0},\nu_{0}',\{\lambda\}} \Re_{\nu_{0}',\nu_{0}} T^{*}_{\nu_{0}',\{\lambda\}} T_{\nu_{0},\{\lambda\}}, \qquad \Re_{\nu_{0}',\nu_{0}} = \frac{1}{2} \left(1 + \vec{P} \cdot \vec{\sigma}^{P}\right)_{\nu_{0}',\nu_{0}}$$

$$T_{\nu_0,\{\lambda\}} = \sum_{\nu} D_{\nu_0,\nu}^{1/2}(\phi,\theta,\chi) A_{\nu,\{\lambda\}}$$

-1

Trick for factoring out polarization [Cornwell:1997ke]

spin 1/2, 4π rotation

Explicit homomorphism with the non-trivial centre:

$$\phi: \mathsf{SU}(2) \to \mathsf{SO}(3), \qquad \phi(d) = R,$$

$$\phi(d) = \frac{1}{2} \operatorname{Tr} \left[D^{1/2*}(\phi, \theta, \chi) \sigma_i^P D^{1/2}(\phi, \theta, \chi) \sigma_j^P \right] = R_{ij}(\phi, \theta, \chi)$$

Appendix: $\vec{\alpha}$ for baryon + vector

Example: $\Lambda_c^+ \to K^{**} (\to \pi^+ K^-) p$ aligned to p

Cross-checks Equality of choice of alignment

Polarimetry of $\Lambda_c \rightarrow p K \pi$

Remco de Boer

$SU(2) \rightarrow SO(3)$ homomorphism

Polarimeter field for baryon + vector

References

Intensity distributions are exactly the same for each DPD alignment

Polarimetry of $A_C \rightarrow pK\pi$

Remco de Boer

 $SU(2) \rightarrow SO(3)$ homomorphism

Polarimeter fiel for baryon + vector

References

- [Brambilla:2010cs] Brambilla et al., "Heavy quarkonium: Progress, puzzles, and opportunities," *Eur. Phys. J. C*, vol. 71, no. 2, p. 1534, Feb. 2011, 10.1140/epic/s10052-010-1534-9.
- [Facciol:2010kd] Facciol et al., "Towards the experimental clarification of quarkonium polarization," *Eur. Phys. J. C*, vol. 69, no. 3, pp. 657–673, Oct. 2010, 10.1140/epjc/s10052-010-1420-5.
- [Butenschoen:2012px] Butenschoen and Kniehl, "J/ψ polarization at the Tevatron and the LHC: Nonrelativistic-QCD Factorization at the Crossroads," Phys. Rev. Lett., vol. 108, no. 17, p. 172002, Apr. 2012, 10.1103/PhysRevLett.108.172002.
- [Konig:1993w2] Konig et al., "Determination of the b → c handedness using nonleptonic A_c decays," Phys. Rev. D, vol. 49, no. 5, pp. 2363–2368, Mar. 1994, 10.1103/PhysRevD.49.2363.
- [Dutta:2015ueb] Dutta, " $A_b \rightarrow (A_C, p) \tau \nu$ decays within standard model and beyond," Phys. Rev. D, vol. 93, no. 5, p. 054003, Mar. 2016, 10.1103/PhysRevD.93.054003.
- [Shivashankara:2015cta] Shivashankara et al., " $\Lambda_b \rightarrow \Lambda_c \tau \bar{\nu} \tau$ decay in the standard model and with new physics," Phys. Rev. D, vol. 91, no. 11, p. 115003, Jun. 2015, 10.1103/PhysRevD.91.115003.
- [Li:2016pdv] Li et al., " $\Lambda_C \rightarrow \Lambda_C \tau \bar{\nu}_T$ decay in scalar and vector leptoquark scenarios," JHEP, vol. 02, p. 068, Feb. 2017, 10.1007/JHEP02(2017)068.
- [Datta:2017aue] Datta et al., "Phenomenology of $A_b \rightarrow A_C \tau \overline{\nu} \tau$ using lattice QCD calculations," *JHEP*, vol. 2017, no. 8, p. 131, Aug. 2017, 10.1007/JHEP08(2017)131.
- [Ray:2018hrx] Ray et al., "Probing new physics in semileptonic A_b decays," Phys. Rev. D, vol. 99, no. 1, p. 015015, Jan. 2019, 10.1103/PhysRevD.99.015015.

- [Penalva:2019rgt] Penalva et al., "Further tests of lepton flavour universality from the charged lepton energy distribution in $b \rightarrow c$ semileptonic decays: The case of $A_b \rightarrow A_c \ell \bar{\nu} e^{\beta}$, *Phys. Rev. D*, vol. 100, no. 11, p. 113007, Dec. 2019, 10.1103/PhysRevD.100.113007.
- [Ferrillo:2019owd] Ferrillo et al., "Probing effects of new physics in $A^0_b \rightarrow A^+_c \mu^- \bar{\nu}_\mu$ decays," JHEP, vol. 2019, no. 12, p. 148, Dec. 2019, 10.1007/JHEP12(2019)148.

- $$\begin{split} & [\text{LHCb:}2021\text{ptx}] \quad \text{LHCb Collaboration et al., "Observation of excited Ω_c^0 baryons} \\ & \text{in $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decays," Phys. Rev. D, vol. 104, no. 9, p. L091102, Nov. 2021, 10.1103/PhysRevD.104.L091102.} \end{split}$$
- [Aiola:2020yam] Aiola et al., "Progress towards the first measurement of charm baryon dipole moments," *Phys. Rev. D*, vol. 103, no. 7, p. 072003, Apr. 2021, 10.1103/PhysRevD.103.072003.

Polarimetry of $A_c \rightarrow p K \pi$

Remco de Boer

 $SU(2) \rightarrow SO(3)$ homomorphism

Polarimeter fie for baryon + vector

References

[Tsai:1971vv] Tsai, "Decay correlations of heavy leptons in $e^+e^- \rightarrow \ell^+\ell^-$," *Phys. Rev. D*, vol. 4, no. 9, pp. 2821–2837, Nov. 1971, 10.1103/PhysRevD.4.2821.

[Kuhn:1991cc] K\u00f6han and Mirkes, "Angular distributions in semileptonic τ decays," *Phys. Lett. B*, vol. 286, no. 3, pp. 381–386, Jul. 1992, 10.1016/0370-2693(92)91791-7.

[Davier:1992nv] Davier et al., "The optimal method for the measurement of tau polarization," Phys. Lett. B, vol. 306, no. 3-4, pp. 411–417, Jun. 1993, 10.1016/0370-2693(93)90101-M.

[Kuhn:1982di] Kühn and Wagner, "Semileptonic decays of the τ lepton," $\mathit{Nucl. Phys. B},$ vol. 236, no. 1, pp. 16–34, Apr. 1984, 10.1016/0550-3213(84)9052-4.

[Kuhn:1993ra] Kühn, "Tau kinematics from impact parameters," Phys. Lett. B, vol. 313, no. 3, pp. 458–460, Sep. 1993, 10.1016/0370-2693(93)90019-E.

[Hagiwara:1989fn] Hagiwara et al., "r polarization measurements at LEP and SLC," Phys. Lett. B, vol. 235, no. 1, pp. 198–202, Jan. 1990, 10.1016/0370-2693(90)90120-U. [JPAC:2019ufm] Mikhasenko et al., "Dalitz-plot decomposition for three-body decays," *Phys. Rev. D*, vol. 101, no. 3, p. 034033, Feb. 2020, 10.1103/PhysRevD.101.034033.

 $\begin{array}{l} [{\sf BaBar.2007xtc}] \quad {\sf BaBar} \ {\sf Collaboration} \ {\it et} \ al., \ ``{\sf Study} \ of \ \bar{B}^{-} \rightarrow \Xi_c \bar{\Lambda}^{-}_c \ \ {\sf and} \\ \bar{B}^{-} \rightarrow \Lambda^{+}_c \bar{\Lambda}^{-}_c \ \bar{K}^{-} \ \ {\sf decays} \ {\it at} \ babar, \ ``Phys. Rev. \ D, \ {\sf vol.} \ 77, \ {\sf no.} \ 3, \ {\sf p.} \\ 031101, \ {\sf Feb.} \ 2008, \ 10.1103/PhysRevD.77.031101. \end{array}$

[Belle:2017]rt] Belle Collaboration et al., "Observation of $\Xi_c(2930)^0$ and updated measurement of $B^- \rightarrow K^- \Lambda_c^+ \bar{\Lambda}_c^-$ at Belle," *Eur. Phys. J. C*, vol. 78, no. 3, p. 252, Mar. 2018, 10.1140/epjc/s10052-018-5720-5.

[Belle:2018yob] Belle Collaboration *et al.*, "Evidence of a structure in $\bar{K}^0 \Lambda_c^+$ consistent with a charged $\Xi_c(2930)^+$, and updated measurement of $\bar{B}^0 \to \bar{K}^0 \Lambda_c^+ \bar{\Lambda}_c^-$ at Belle," *Eur. Phys. J. C*, vol. 78, no. 11, p. 928, Nov. 2018, 10.1140/epjc/s10052-018-6425-5.

[LHCb:2022vns] Collaboration, "Study of the $B^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^- K^-$," Phys. Rev. D, Nov. 2022, 10.48550/ARXIV.2211.00812.

[Cornwell:1997ke] Cornwell, Group Theory in Physics: An Introduction. San Diego, CA: Academic Press, 1997. ISBN 978-0-12-189800-7

[[]Kuhn:1995nn] Kühn, "τ polarimetry with multimeson states," Phys. Rev. D, vol. 52, no. 5, pp. 3128–3129, Sep. 1995, 10.1103/PhysRevD.52.3128.