

What do lineshapes of resonances teach us about their nature?

Christoph Hanhart

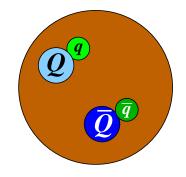
Forschungszentrum Jülich

Based on

- F.-K. Guo et al. "Hadronic molecules," Rev. Mod. Phys. 90(2018)015004
- I. Matuschek et al., "On the nature of near-threshold bound and virtual states," Eur. Phys. J. A 57 (2021) no.3, 101
- V. Baru et al., "Effective range expansion for narrow near-threshold resonances," arXiv:2110.07484
- C. Hanhart et al., "Lineshapes for composite particles with unstable constituents," PRD81 (2010), 094028

Overview

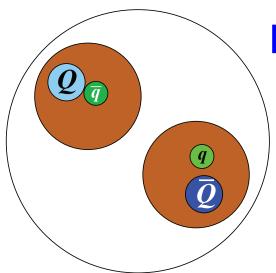
We want employ line shapes to distinguish



e.g. Quarkonia or Tetraquarks

 \rightarrow Compact object formed from $\bar{Q}Q$ or (Qq) and $(\bar{Q}\bar{q})$

and



Hadronic-Molecules

 \rightarrow Extended object made of $(\bar{Q}q)$ and $(Q\bar{q})$

Bohr radius = $1/\gamma = 1/\sqrt{2\mu E_b}$ $\gg 1 \text{ fm} \gtrsim \text{confinement radius}$ for near threshold states

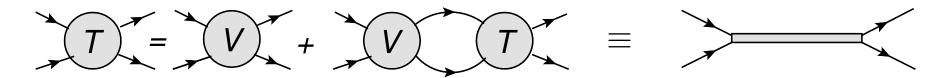
Tool: The Weinberg compositeness criterion

Weinberg Phys.Rev.137(1965)B672, Baru et al. (2004) Expand in terms of non-interacting quark and meson states

$$|\Psi\rangle = \begin{pmatrix} \lambda |\psi_0\rangle \\ \chi(\mathbf{p}) |h_1 h_2\rangle \end{pmatrix},$$

here $|\psi_0\rangle =$ elementary state and $|h_1h_2\rangle =$ two-hadron cont., then $\lambda^2 = |\langle \psi_0 | \Psi \rangle|^2 =$ probability to find bare state in physical state $\rightarrow \lambda^2$ is the quantity of interest!

Crucial observation: S. Weinberg, Phys. Rev. 130(1963)776; 131, 440 (1963) Non-pert. hadron-hadron interactions equivalent to pole term + perturbative interaction



→ Dynamical information transferred into coupling

Derivation

Therefore: $\hat{H}_{hh} = \hat{H}_{hh}^0 = \vec{p}^2/(2\mu)$ contains only kinetic terms!

$$\hat{\mathcal{H}}|\Psi\rangle = E|\Psi\rangle, \ \hat{\mathcal{H}} = \begin{pmatrix} \hat{H}_c & \hat{V} \\ \hat{V} & \hat{H}_{hh}^0 \end{pmatrix} \longrightarrow \chi(p) = \lambda \frac{f(p^2)}{E - p^2/(2\mu)}$$

introducing the transition form factor $\langle \psi_0 | \hat{V} | hh \rangle = f(p^2)$

Therefore

$$|\Psi\rangle = \lambda \begin{pmatrix} |\psi_0\rangle \\ -\frac{f(p^2)}{E_B + p^2/(2\mu)} |h_1h_2\rangle \end{pmatrix},$$

For the normalization of the physical state we get

$$1 = \langle \Psi | \Psi \rangle = \lambda^2 \left(1 + \int \frac{d^3 p}{(2\pi)^3} \frac{f^2(p^2)}{(E_B + p^2/(2\mu))^2} \right)$$

provides connection between λ^2 and hadronic properties \implies Need to understand the integral **Effective Coupling**

using $\int \frac{f^2(p^2)d^3p}{(p^2/(2\mu) + E_B)^2} = \frac{4\pi^2\mu^2 f(0)^2}{\sqrt{2\mu E_B}} + \mathcal{O}\left(\frac{\sqrt{E_B\mu}}{\beta}\right)$

for *s*-waves; $1/\beta$ = range of forces; $\mu f(0)^2/(2\pi) = g^2$; $\gamma = \sqrt{2\mu E_B}$

$$1 = \lambda^2 \left(1 + \frac{\mu g^2}{\gamma} + \mathcal{O}\left(\frac{\gamma}{\beta}\right) \right) \implies g^2 = \frac{\gamma}{\mu} \left(\frac{1 - \lambda^2}{\lambda^2}\right)$$

This gives for the residue, $g_{\text{eff}(\text{NR})}^2 = (2\pi/\mu)\lambda^2 g^2$:

$$g_{\text{eff(NR)}}^2 = 2\pi (1-\lambda^2)\gamma/\mu^2 \le 2\pi\gamma/\mu^2$$

 $(1 - \lambda^2)$ = Quantifies molecular component in physical state

The structure information is hidden in the effective coupling, extracted from experiment, independent of the phenomenology used to introduce the pole(s)

Connecting to effective range expansion

The scattering amplitude is in terms of the previous parameters

$$T_{\rm NR}(E) = \frac{2\pi}{\mu} \frac{g^2}{E + E_B + g^2(ik + \gamma)}$$

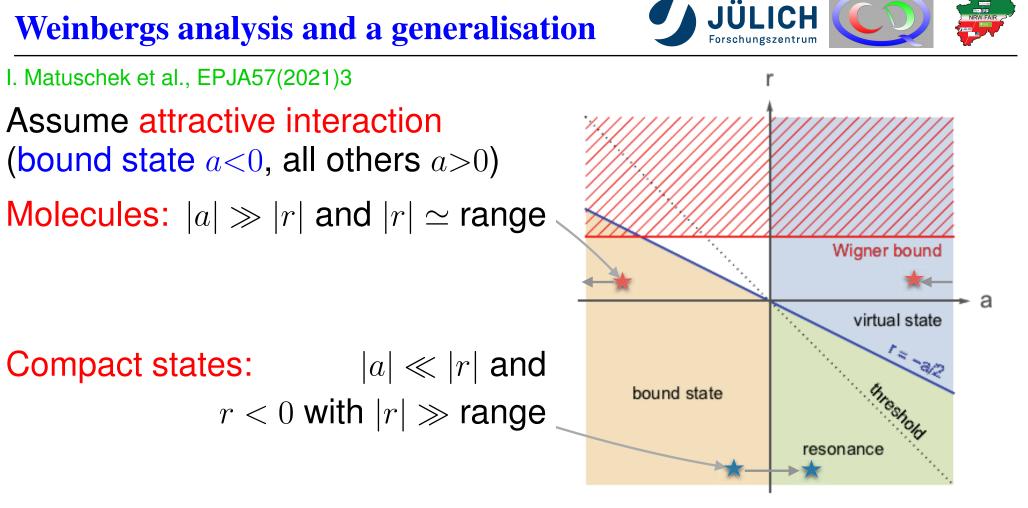
where $k^2 = 2\mu E \& g^2 = \infty$ for molecule / $g^2 = 0$ for compact state

The effective range expansion reads:

$$T_{\rm NR}(E) = -\frac{2\pi}{\mu} \frac{1}{1/a + (r/2)k^2 - ik}$$

and we get from matching coefficients

$$\frac{1}{a} = -\frac{E_B}{g^2} + \gamma \qquad \implies a = -2\frac{1-\lambda^2}{2-\lambda^2}\left(\frac{1}{\gamma}\right) + \mathcal{O}\left(\frac{1}{\beta}\right)$$
$$r = -\frac{1}{g^2\mu} \qquad \implies r = -\frac{\lambda^2}{1-\lambda^2}\left(\frac{1}{\gamma}\right) + \mathcal{O}\left(\frac{1}{\beta}\right)$$

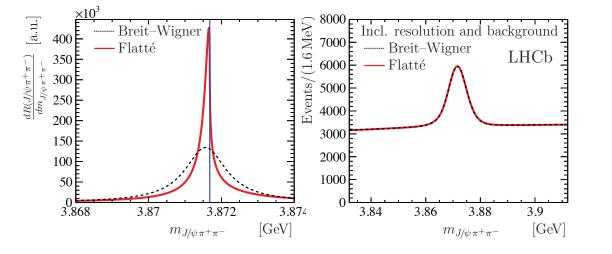


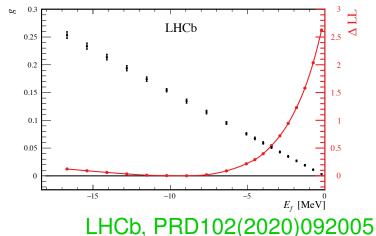
When a changes sign (r fixed): Molecule \rightarrow virtual stateCompact state \rightarrow resonance

Subsummed in compositness $\bar{X} = 1/\sqrt{1 + |2r/a|}$

other approaches: Sekihara, Hyodo, Oset, Oller, Nieves, Jido ... mostly relying on on-shell factorisation of the potential; little about virtual states

$\chi_{c1}(3872)$ also known as X(3872)





Data analysed employing for the rate $\Gamma_{\rho}(E)$

C.H. at al., PRD76(2007)034007

 $\left| E - E_f + \frac{i}{2} [g_1^2 \sqrt{2\mu_1 E} + g_2^2 \sqrt{2\mu_2 (E - \delta)} + \Gamma_\rho(E) + \Gamma_\omega(E) + \Gamma_0] \right|^2$

with E_f fixed to -7.18 MeV: $g_1^2 = g_2^2 = g^2 = 0.108 \pm 0.003$ such that

$$-r = 2/(\mu_1 g^2) + \sqrt{\mu_2/(2\mu_1^2 \delta)} \simeq (3.8 + 1.4) \text{ fm} \gg 1/M_{\pi}$$

Does this mean $\chi_{c1}(3872)$ is a compact state?

A. Esposito et al., PRD105(2022)L031503

The second term in

$$-r = 2/(\mu_1 g_1^2) + \frac{g_2^2}{g_1^2} \sqrt{\mu_2/(2\mu_1^2\delta)} \simeq (3.8 + 1.4) \text{ fm} \gg 1/M_{\pi}$$

comes from isospin-symmetry, $g_1^2 = g_2^2 = g^2$ and the expansion

$$ik_2 = \sqrt{2\mu_2(\delta - k_1^2/(2\mu_1))} = \sqrt{2\mu_2\delta} - \frac{1}{2}\sqrt{\frac{\mu_2}{2\mu_1^2\delta}} k_1^2 + \mathcal{O}\left(\left(\frac{k_1^2}{\mu_1\delta}\right)^2\right)$$

which "measures" the contribution from the charged channel and does not have a proper isospin limit ($\delta \rightarrow 0$). However,

- it scales with $g^2 (\rightarrow \infty \text{ for molecule})$
- we thus see that this contribution is sizable \rightarrow needs to be removed to understand structure

Thus the quantity relevant for the Weinberg analysis is thus

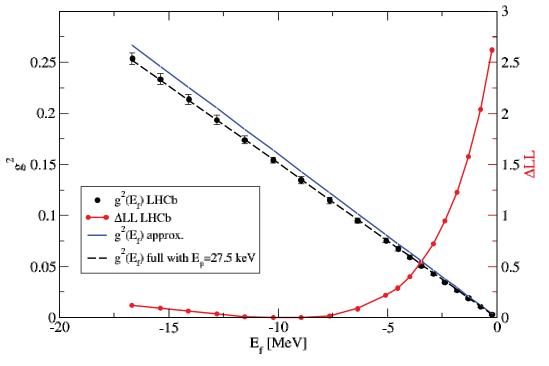
$$-r_{\rm eff.} = 2/(\mu_1 g^2) \le 3.8$$
 fm

$$E - E_f + \frac{i}{2} \left[g^2 \left(\sqrt{2\mu_1 E} + \sqrt{2\mu_2 (E - \delta)} \right) + \Gamma_{\rho}(E) + \Gamma_{\omega}(E) + \Gamma_0 \right] \Big|^2$$

 $\Gamma_{\rho}(E)$

For E < 0 the parts in red define E_p , the real part of pole location:

$$E_p = E_f + \frac{g^2}{2} \left(\sqrt{2\mu_1 |E_p|} + \sqrt{2\mu_2 (\delta + |E_p|)} \right) \implies g^2(E_f, E_p)$$



Since $E_p \ll \delta$ one may approximate correlation parameter free

$$g^2(E_f, 0) = -\sqrt{\frac{2}{\mu_2 \delta}} E_f$$

To remove correlation:

Express E_f by E_p

The formula that should be used in the analysis:

 $\left|E - E_p + \frac{i}{2} \left[g^2 \left(\sqrt{2\mu_1 E} \mp i\gamma_1 + \sqrt{2\mu_2 (E - \delta)} - i\gamma_2\right) + \Gamma_{\text{inel.}}(E)\right]\right|^2$

 $\Gamma_{\rho}(E)$

for pole on the physical (unphysical) $D^0 \overline{D}^{*0}$ sheet and where $\gamma_1 = \sqrt{2\mu_1 |E_p|}$ and $\gamma_2 = \sqrt{2\mu_2 (\delta + |E_p|)}$

The LHCb data only provides lower bound for g

If one allows for $\Delta LL = 1$, one finds $g^2 > 0.1$ and accordingly

$$-r_{\text{eff.}} < 4 \text{ fm} \quad \text{and} \quad \bar{X} = \frac{1}{\sqrt{1+2|r_{\text{eff.}}/\Re(a)|}} > 0.94 \;,$$

fully consistent with a molecular interpretation

Similar numbers emerge for the T_{cc} state ...

- \rightarrow The formulas were derived neglecting finite range corrections
- \rightarrow The Wigner bound (causality!) requires $r < R \sim 1/\beta$
 - E.P. Wigner, Phys.Rev 98(1955)145

 \implies Zero range interactions call for neg. effective ranges

The longest range interaction is the one π exchange, however in the charm system $\pi D\bar{D}$ can go on-shell

 \implies no fixed sign of potential

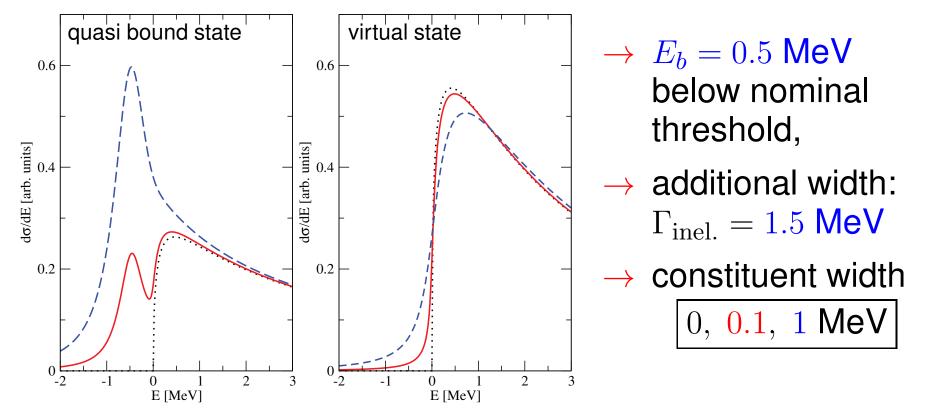
We need hadronic EFT to quantify the effects!

pert. pions: Mehen, Valderrama, Mikhasenko, ...; non-pert. pions: Baru, Filin, Du, Guo, C.H., ...

 \implies three-body calculation for T_{cc} : $r_{OPE} = +0.4$ fm

M. L. Du et al., PRD105 (2022)014024.

E. Braaten and M. Lu, PRD76(2007)094028, C. H. et al., PRD81(2010)094028



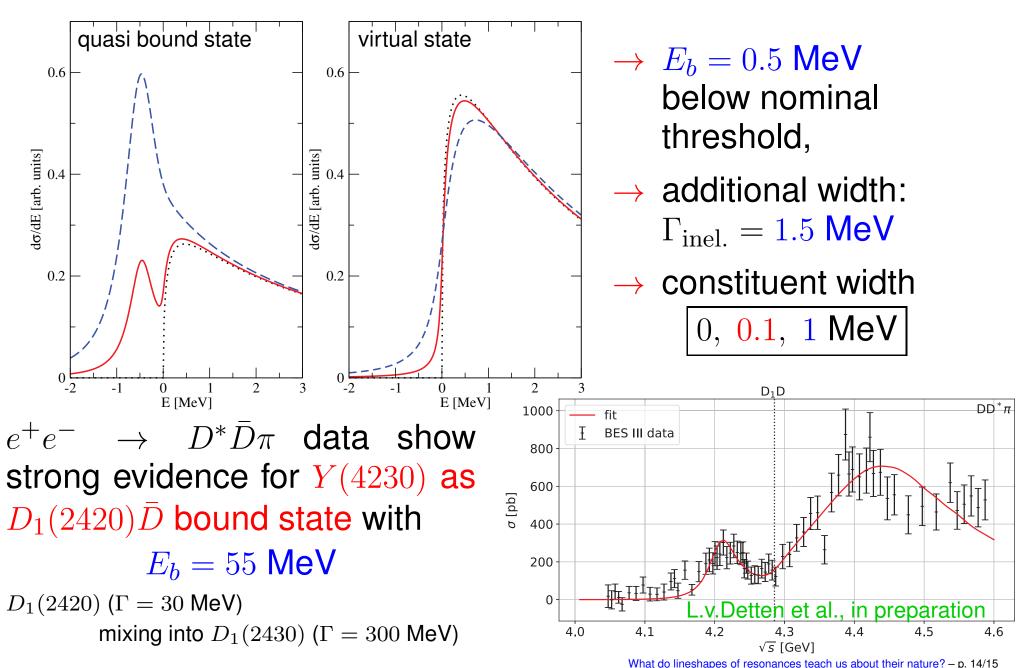
Molecules with unstable const. can show peculiar line shapes

Strong rise above nominal threshold, because of

- \rightarrow nearby pole
- \rightarrow with large residue

Form depends on interplay of scales

E. Braaten and M. Lu, PRD76(2007)094028, C. H. et al., PRD81(2010)094028



Conclusion

- At present the data on $\chi_{c1}(3872)$ aka X(3872) and T_{cc}^+ are consistent with a molecular interpretation, but so far a sizeable compact component cannot be excluded.
- For more definite statements we need
- → Reanalysis of LHCb data with correlations removed
- → Combined analysis of inelastic and elastic channels
- → Direct measurement of line shape (PANDA?)
- → Information on (iso)spin partner states

Line shapes carry important structure information

... thank you very much for your attention