

Theoretical model of two pion photoproduction: II

Robert J. Perry University of Barcelona, Spain perryrobertjames@gmail.com

with Łukasz Bibrzycki, Nadine Hammoud, Vincent Mathieu, Adam P. Szczepaniak

Theoretical model of two pion photoproduction: II: November 16, 2022.

OUTLINE

- Review
- Kinematics variables
- Unpolarized observables
- Polarized Observables:
 - Spin-density matrix elements
 - Beam asymmetry
- Further Work

- Photoproduction important for hadron spectroscopy.
- Study both standard and exotic hadrons.
- > JPAC has been developing a model of double pion photoproduction:
 - Gauge invariant Deck
 - Regge amplitude for rho production

Resonances in (πN) system

For
$$\vec{\gamma} p \rightarrow \pi^+ \pi^- p$$
 can study
 $\vec{\gamma} p \rightarrow (\pi^\pm \pi^\mp) p$
 $\vec{\gamma} p \rightarrow \pi^\pm (\pi^\mp p)$

- $\blacktriangleright ~\vec{\gamma} p \to \pi^- \Delta^{++}$
- Comment: all results are PRELIMINARY!

5 kinematic variables required.

▶ Angular moments of $\pi\pi$ system: ▶ $\gamma p \rightarrow \pi^- \Delta^{++}$

$$s = (p_1 + q)^2$$

 $t = (p_1 - p_2)^2$
 $s_{\pi\pi} = (k_1 + k_2)^2$

and (θ, ϕ) describing the π^+ relative to the production plane

 $\gamma p \to \pi^- \Delta^{++}$ $s = (p_1 + q)^2$ $t = (q - k_2)^2$ $s_{\pi N} = (p_2 + k_1)^2$

and (θ,ϕ) describing the p relative to the production plane

Predictions for $\gamma p \rightarrow \pi^- \Delta^{++}$

- Branching ratio $\Gamma(\Delta \rightarrow \pi N) / \Gamma_{\text{total}} \sim 1$
- ▶ Integrate model over Δ peak to extract $\gamma p \rightarrow \pi^- \Delta^{++}$.

> Effectively one-pion-exchange model, couplings not put in by hand.

 $d\sigma/dt$

Figure 1: Ballam et al, Phys.Rev.D 5 (1972) 545

Theoretical model of two pion photoproduction: II: November 16, 2022

Δ production by polarized photons

- Provide a further check of model.
- Linearly polarized photons allow for discrimination between natural $(P(1)^J = 1)$ and unnatural $(P(1)^J = -1)$ parity.
- > Φ is angle between polarization vector and production plane.
- Intensity is

$$I(\Omega, \Phi) = I^0(\Omega) - P_\gamma \cos 2\Phi I^1(\Omega) - P_\gamma \sin 2\Phi I^2(\Omega)$$

- P_γ degree of polarization: $0 \le P_\gamma \le 1$
- Integrating over the Δ resonance gives

$$\begin{split} \tilde{I}(\Omega,\Phi) &= \int_{m_{\Delta}-\delta}^{m_{\Delta}+\delta} dm_{\pi N} I(\Omega,\Phi) \\ &= \tilde{I}^0(\Omega) - P_{\gamma} \cos 2\Phi \tilde{I}^1(\Omega) - P_{\gamma} \sin 2\Phi \tilde{I}^2(\Omega) \end{split}$$

Theoretical model of two pion photoproduction: II: November 16, 2022.

• Up to overall normalization, relate the integrated intensity $\tilde{I}(\Omega, \Phi)$ to decay angular distribution:

$$\begin{split} \bar{I}(\Omega,\Phi) \propto W(\theta,\phi,\Phi) &= \frac{3}{4\pi} \left(\rho_{33}^0 \sin^2 \theta + (\frac{1}{2} - \rho_{33}^0) (\frac{1}{3} + \cos^2 \theta) - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{31}^0 \cos \phi \sin 2\theta - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{3-1}^0 \cos 2\phi \sin^2 \theta \\ &- P_\gamma \cos 2\Phi \Big[\rho_{33}^1 \sin^2 \theta + \rho_{11}^1 (\frac{1}{3} + \cos^2 \theta) - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{31}^1 \cos \phi \sin 2\theta - \frac{2}{\sqrt{3}} \operatorname{Re} \rho_{3-1}^1 \cos 2\phi \sin^2 \theta \Big] \\ &- P_\gamma \sin 2\Phi \Big[\frac{2}{\sqrt{3}} \operatorname{Im} \rho_{31}^2 \sin \phi \sin 2\theta + \frac{2}{\sqrt{3}} \operatorname{Im} \rho_{3-1}^2 \sin 2\phi \sin^2 \theta \Big] \Big) \end{split}$$

 ρ^k_{ij}(s, t): Spin density matrix elements: encode the angular correlations.

Comparison to Bingham et al. 1970

Figure 2: Ballam et al, Phys.Rev.D 5 (1972) 545

Theoretical model of two pion photoproduction: II: November 16, 2022.

BEAM ASYMMETRY

Computable from SDMEs:

$$\Sigma = 2(\rho_{11}^1 + \rho_{33}^1)$$

Figure 3: GlueX, Phys.Rev.C 103 (2021) 2, L022201

Theoretical model of two pion photoproduction: II: November 16, 2022

PREVIOUS STUDIES

Figure 4: Phys.Rev.C 103 (2021) 2, L022201

FUTURE WORK

Factorization allows us to leverage excellent knowledge of $2 \rightarrow 2$ processes.

- > Developed model of $\gamma p
 ightarrow p \pi^+ \pi^-$.
- Applied to description of $\gamma p
 ightarrow \pi^- \Delta$
 - Unpolarized observables reasonable.
 - > Polarized observables require more sophisticated model: ρ , a_2 exchange.

JPAC MODEL