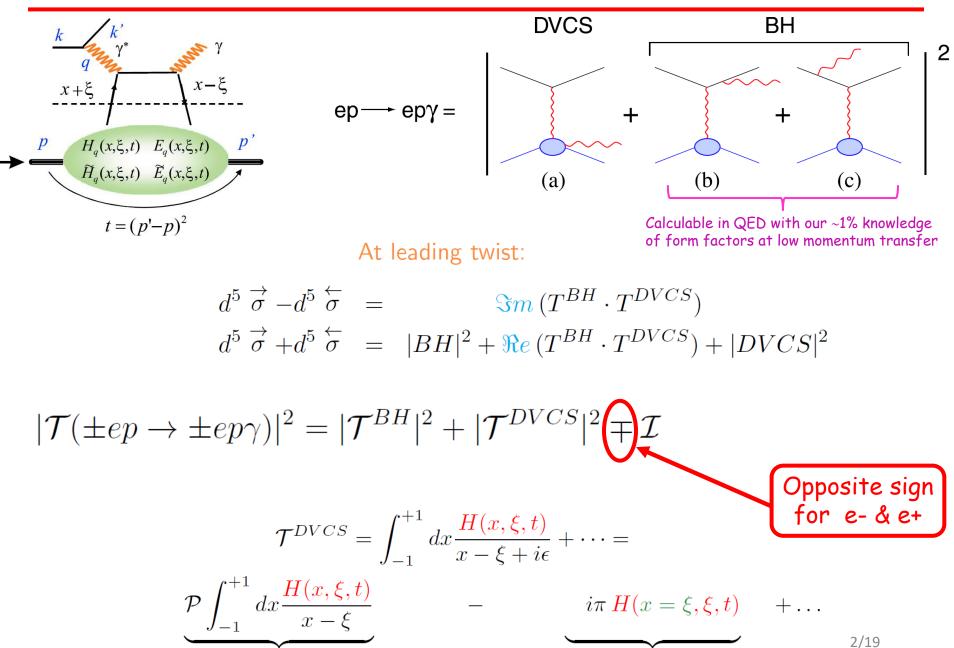
DVCS using a positron beam in Hall C

A. Camsonne,¹ M. Carmignotto,¹ R. Ent,¹ J. Grames^{*,1} C. Keppel,¹ M. McCaughan,¹ B. Sawatzky,¹ A. Somoy,¹ B. Woitsekhowski,¹ S. Wood,¹ C. Zorn,¹ M. Caudron,² L. Causse,² P. Chatagnon,² R. Dupré,² M. Ehrhart,² M. Guidal,² S. Habet,² A. Hobart,² D. Marchand,² C. Muñoz Camacho^{*†,2} S. Niccolai,² H.-S. Ko,² K. Price,² V. Sergeveva,² conditionally approved E. Voutier,² S. Zhao,² M. Mazouz^{*},³ S. Ali,⁴ V. Berdnikov,⁴ T. Horn,⁴ G. Kalicy,⁴ M. Muhoza,⁴ I. Pegg,⁴ R. Trotta,⁴ A. Asaturyan,⁵ A. Mkrtchyan,⁵ H. Mkrtchyan,⁵ (C2) by PAC48 (2020) V. Tadevosyan,⁵ H. Voskanyan,⁵ S. Zhamkochyan,⁵ M. Amaryan,⁶ C. Hyde,⁶ M. Kerver,⁶ H. Rashad,⁶ J. Murphy,⁷ J. Roche,⁷ P. Markowitz,⁸ A. Afanasev,⁹ W. J. Briscoe,⁹ I. Strakovsky,⁹ M. Boer,¹⁰ R. Paremuzyan,¹⁰ T. Forest,¹¹ J. R.M. Annand,¹² D. J. Hamilton,¹² B. McKinnon,¹² D. Day,¹³ D. Keller,¹³ R. Rondon,¹³ J. Zhang,¹³ K. Brinkmann,¹⁴ S. Diehl,¹⁴ R. Novotny,¹⁴ P. Gueve,¹⁵ V. Bellini,¹⁶ D. Dutta,¹⁷ E. Kinney,¹⁸ P. Nadel-Turonski,¹⁹ G. Niculescu.²⁰ S. Sirca.²¹ I. Albavrak.²² M. A. I. Fernando.²³ and M. Defurne²⁴


¹Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606, USA ²Laboratoire de Physique des 2 Infinis Irène Joliot-Curie Université Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France) ³Faculté des Sciences de Monastir (Tunisia) ⁴The Catholic University of America Washington, DC 20064, USA ⁵A. Alikhanyan National Laboratory, Yerevan Physics Institute, Yerevan 375036, Armenia ⁶Old Dominion University Norfolk, VA 23529, USA ⁷Ohio University Athens. OH 45701. USA ⁸Florida International University Miami, FL 33199, USA ⁹The George Washington University Washington, DC 20052, USA ¹⁰University of New Hampshire Durham, NH 03824, USA ¹¹Idaho State University Pocatello, ID 83209, USA ¹²University of Glasgow Glasgow G12 8QQ, United Kingdom ¹³University of Virginia Charlottesville, VA 22904, USA ¹⁴ Universität Gießen Luwigstraße 23, 35390 Gießen, Deutschland ¹⁵Facility for Rare Isotope Beams, Michigan State University 640 South Shaw Lane, East Lansing, MI 48824 ¹⁶Istituto Nazionale di Fisica Nucleare

Experiment

Sezione di Catania, 95123 Catania, Italy ¹⁷Mississippi State University Mississippi State, MS 39762, USA ¹⁸University of Colorado Boulder, CO 80309, USA ¹⁹Stony Brook University Stony Brook, NY ²⁰James Madison University. Harrisonburg, VA 22807, USA ²¹ Univerza v Ljubljani 1000 Ljubljana, Slovenia ²²Akdeniz Üniversitesi 07070 Konyaalti/Antalya, Turkey ²³Hampton University Hampton, VA 23668 ²⁴Commissariat à l'Energie Atomique 91191 Gif-sur-Yvette, France

Spokesperson [†] Contact person

Motivation

Access in helicity-independent cross section

Access in helicity-dependent cross-section

Two complementary approaches:

• Survey measurements with large acceptance device (CLAS + CLAS12):

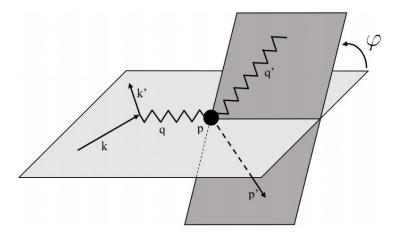
Study of many different observables over a wide range of kinematics, but limited statistical and systematic uncertainties

 Precision measurements in selected kinematic settings (Hall A + Hall C): test of scaling, higher twist corrections, L/T separations...

A few milestones of the precision DVCS program

- First indications of leading twist dominance for DVCS for Q^2 as low as ~2 GeV²
- Large magnitude of the DVCS² contribution

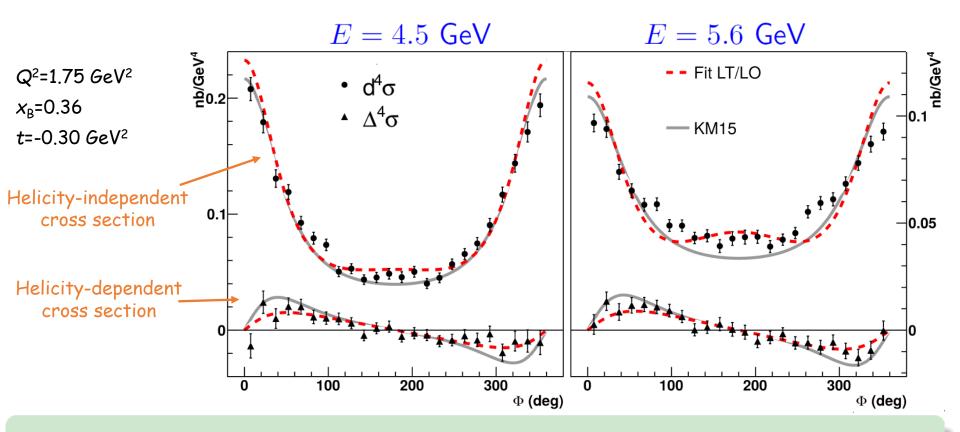
Phys. Rev. Lett. **97**, 262002 (2006) Phys. Rev. **C92**, 055202 (2015)

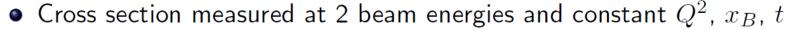

- Necessity to include corrections $O(t/Q^2)$ & $O(M^2/Q^2)$ to the DVCS cross section
- Initial separation DVCS2 & BH-DVCS interference (yet ambiguous)

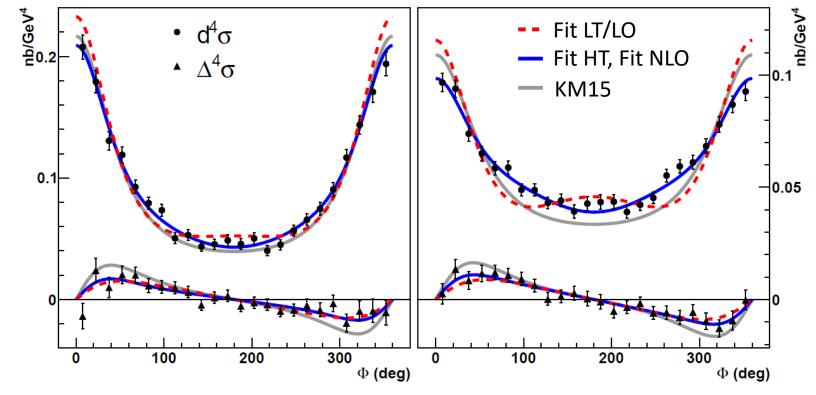
Nature Communications 8, 1408 (2017)

- Flavor separation of CFFs combining proton & neutron DVCS data
- DVCS on coherent deuteron (→ nuclear GPDs)
 Phys. Rev. Lett. 99, 242501 (2007)
 Nature Physics 16, 191 (2020)
- L/T separation of π^0 electroproduction cross section (\rightarrow transversity GPDs)
- Flavor separation of transversity GPDs using π^0 electroproduction & a LD₂ target

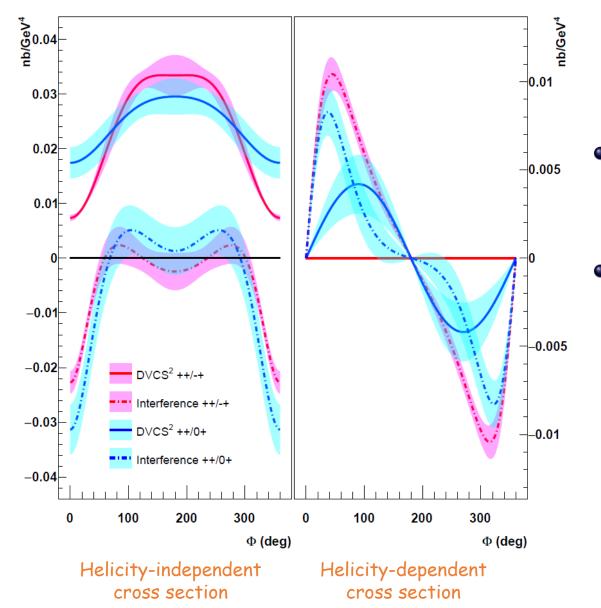
Phys. Rev. **C83** 025201 (2011) Phys. Rev. Lett. **117**, 262001 (2016) Phys. Rev. Lett. **118**, 222002 (2017)


$$\begin{split} \sigma(ep \to ep\gamma) &= \underbrace{|BH|^2}_{\text{Known to} \sim 1\%} + \underbrace{\mathcal{I}(BH \cdot DVCS)}_{\text{Linear combination of GPDs}} + \underbrace{|DVCS|^2}_{\text{Bilinear combination of GPDs}} \\ \mathcal{I} \propto 1/y^3 &= (k/\nu)^3, \\ \left|\mathcal{T}^{DVCS}\right|^2 \propto 1/y^2 &= (k/\nu)^2 \end{split}$$


 φ -dependence provides 5 independent observables:


 ${\sim}1$, ${\sim}\cos\varphi, {\sim}\sin\varphi$, ${\sim}\cos(2\varphi), {\sim}\sin(2\varphi)$

• Cross section measured at 2 beam energies and constant Q^2 , x_B , t


Leading-twist and LO simultaneous fit of both beam energies (dashed line) does not reproduce the data
 Light-cone axis in the (q,q') plane (Braun et al.): II++, II++, E++, E++, E++

- Using only helicity-conserving CFFs ("LT/LO") the fit of both beam energies (dashed line) does not reproduce the data
- Including helicity-flip CFFs, either single-helicity flip ("HT") or double-helicity flip ("NLO") satisfactorily reproduce the angular dependence (blue solid line)

DVCS² and \mathcal{I} (DVCS·BH) separated in NLO and higher-twist scenarios

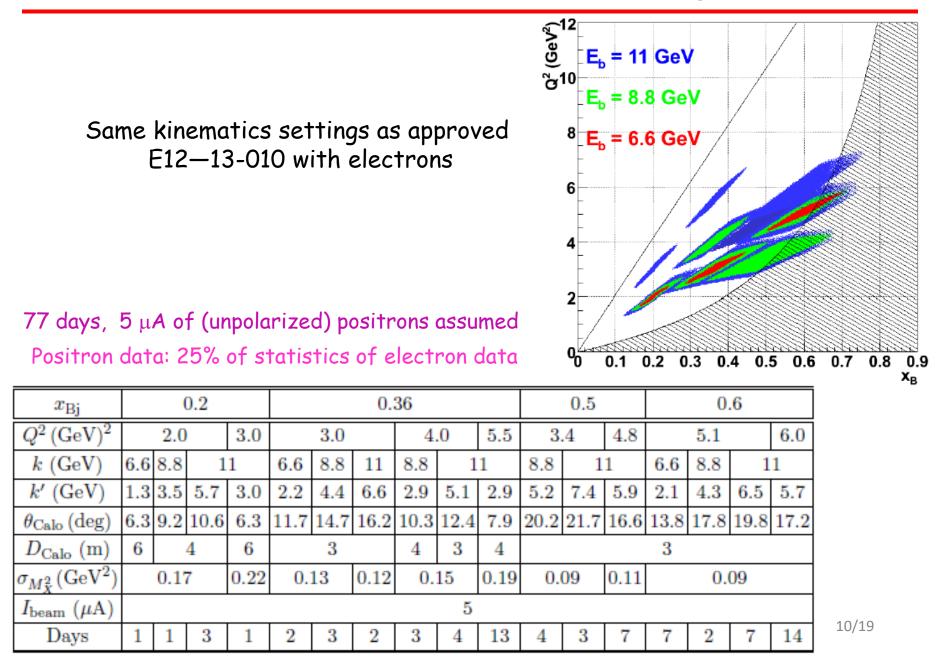
• DVCS² & *I* significantly different in each scenario

 Sizeable DVCS² contribution in the higher-twist scenario in the helicity-dependent cross section

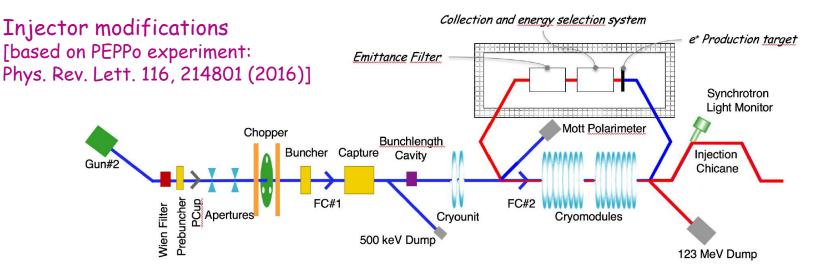
Nature Commun. 8, 1408 (2017)

DVCS with positrons and NPS (proposal to PAC48)

$$|\mathcal{T}(\pm ep \to \pm ep\gamma)|^{2} = |\mathcal{T}^{BH}|^{2} + |\mathcal{T}^{DVCS}|^{2} \mp \mathcal{I}$$
Opposite significant for e- & e+


✓ Precise determination of the absolute photon electro-production cross section

- ✓ Clean, model-independent separation of DVCS² and DVCS-BH interference
- ✓ More stringer constraints on CFFs by combining e⁻ & e⁺ data


<u>In a nutshell:</u>

- Same experimental configuration as approved experiment E12-13-010
- > Expected positron beam momentum spread comparable with current electron beam
- Positron beam size larger than current electron beam (twice bigger at 11 GeV according to current simulation)
- No additional systematic uncertainties expected due to the use of positrons

E12-20-012: Kinematic settings

Positron production and transport

Electrons

Dominated by damping in the LINACS

Dominated by synchrotron rad. in Arcs

Area	δp/p	ε _x	ε _γ
	[x10 ⁻³]	[nm]	[nm]
Chicane	0.5	4.00	4.00
Arc 1	0.05	0.41	0.41
Arc 2	0.03	0.26	0.23
Arc 3	0.035	0.22	0.21
Arc 4	0.044	0.21	0.24
Arc 5	0.060	0.33	0.25
Arc 6	0.090	0.58	0.31
Arc 7	0.104	0.79	0.44
Arc 8	0.133	1.21	0.57
Arc 9	0.167	2.09	0.64
Arc 10	0.194	2.97	0.95
Hall D	0.18	2.70	1.03

Area	δ p/p	ε _x	ε _y
	[x10 ⁻³]	[nm]	[nm]
Chicane	10	500	500
Arc 1	1	50	50
Arc 2	0.53	26.8	26.6
Arc 3	0.36	19	18.6
Arc 4	0.27	14.5	13.8
Arc 5	0.22	12	11.2
Arc 6	0.19	10	9.5
Arc 7	0.17	8.9	8.35
Arc 8	0.16	8.36	7.38
Arc 9	0.16	8.4	6.8
MYAAT01	0.18	9.13	6.19

Positrons

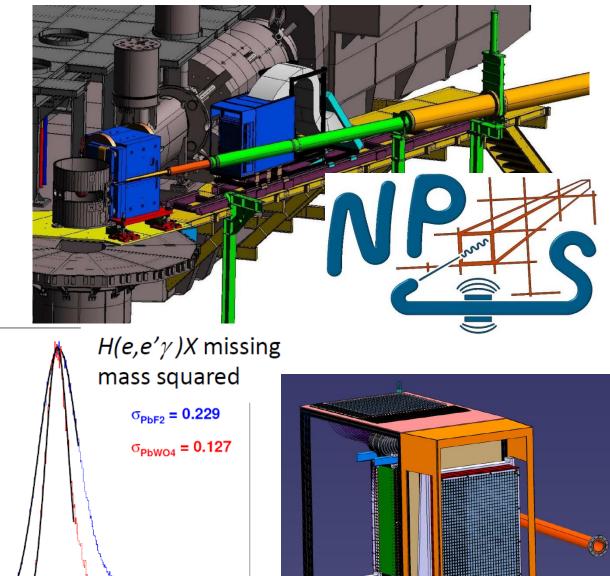
At 11 GeV, after Arc9, e+ beam size ~twice bigger than e- beam

Averaging εx and ε_y:

 $\sqrt{7.6/1.4} \sim 2.3$

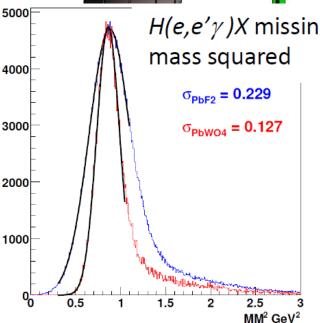
11/19

TAC comments on positron

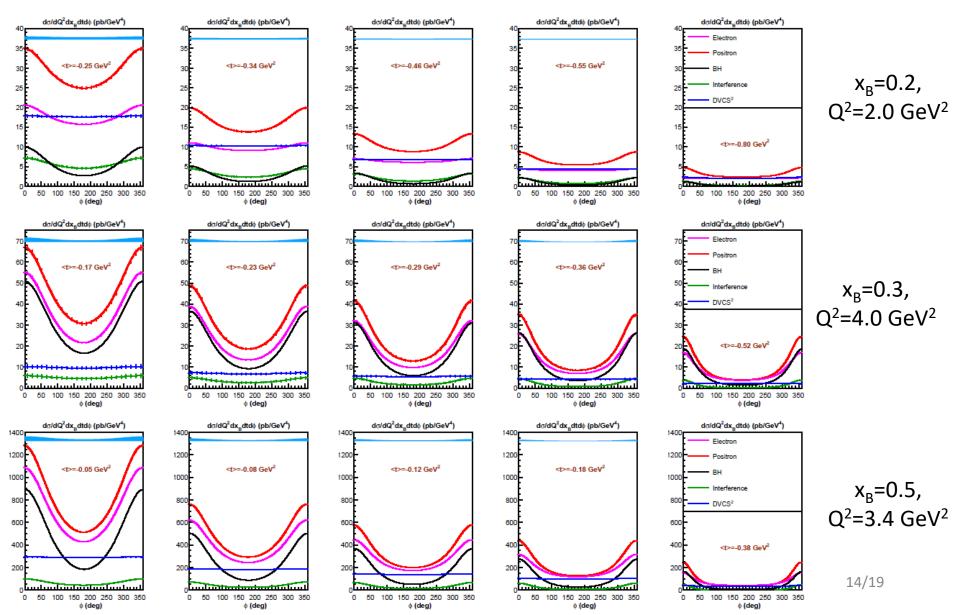

- The implementation of a multi-Hall, high current, high polarization positron beam at CEBAF raises multiple and complex challenges, as detailed in the TAC report
- If the PAC finds our physics program compelling, our collaboration is ready to engage with the Lab to investigate its feasibility.

TAC conclusion:

In conclusion, while a positron beam upgrade is a major upgrade which will require substantial accelerator physics development, a detailed cost and implementation plan, and expensive changes to the CEBAF accelerator, a multi-Hall positron beam capability could have great potential for a future JLAB 12-GeV science program.

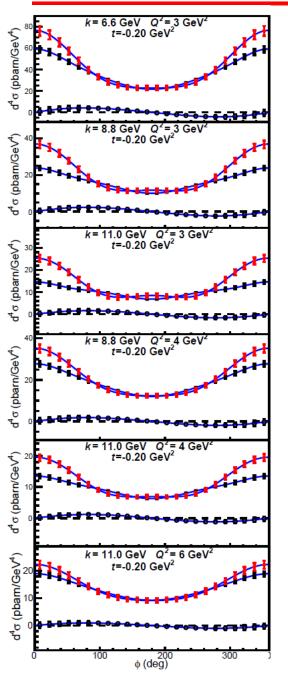

Neutral Particle Spectrometer (NPS)

- 1080 PbWO₄ crystals
- 0.6 Tm sweeping magnet ٠
- F250ADC sampling electronics •
- Large opening angle beam pipe
- SHMS as carriage for rotation


13/19

Separation of DVCS² and BH-DVCS interference

Projections based on the KM15 model (Kumericki and Mueller, 2015)



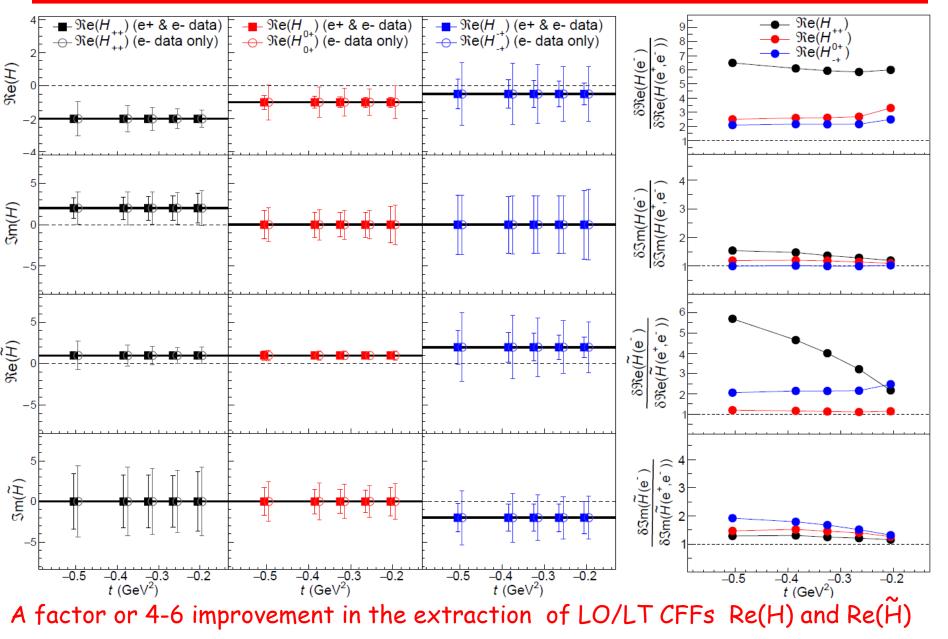
Systematic uncertainties

Source	pt-to-pt (%)	scale (%)
Acceptance	0.4	1.0
Electron PID	<0.1	<0.1
Efficiency	0.5	1.0
Electron tracking	0.1	0.5
Charge	0.5	1.0
Target thickness	0.2	0.5
Kinematics	0.4	<0.1
Exclusivity	1.0	2.0
π^0 subtraction	0.5	1.0
Radiative corrections	1.2	2.0
Total	1.8-1.9	3.4-3.5

The π^0 electroproduction cross section would be measured concurrently with DVCS with both electrons and positrons, and would allow to monitor the systematics of the e- and e+ runs

Impact on Compton Form Factors (CFFs) extraction

 ✓ Combined fit of all electron data from approved experiment E12-13-010


(helicity-dependent AND helicity-independent cross sections)

- $\checkmark\,$ Fits with and without the proposed positron data
- Fits include helicity-conserving CFFs, but also +1 helicity-flip CFFs ("HT") and +2 helicity-flip CFFs ("NLO")
- \checkmark Cross sections generated with CFFs values fitted to 6 GeV data

In order to extract the CFFs we exploit the combined

- Azimuthal dependence (ϕ)
- Beam-energy dependence
- Q²-dependence
- Helicity dependence (for E12-13-010 data)
- Beam-charge dependence
- of the DVCS cross section

Impact on Compton Form Factors (CFFs) extraction

(factor of ~2 for HT and NLO)

Correlation coefficients

Correlations between different CFFs are significantly improved by a combined fit with positrons

$$|\rho_{i,j}| = \operatorname{cov}[\mathbb{F}_i, \mathbb{F}_j]/(\sigma_i \sigma_j)$$

18/19

Electrons & Positrons

Sm(Ĩ,) Sm(Ĥ_) 0.9 0.9 ℜe(Ĥ_) ℜe(Ĥ_) 0.8 0.8 Sm(H_) Sm(H_) **ℜe(H_**) %e(H_) 0.7 0.7 ଞm(ୖH_⊶) ິສm(ୖୖୄ୷) 0.6 0.6 **ℜe(ୖH_{₀+})** ઉદ(Ĥୁ) 0.5 0.5 ଞm(Hୁ) Sm(H_,) 0.4 0.4 େ(H_{o+}) **ℜe(H_{_1})** 0.3 0.3 ଞm(Ĥ₊₊) ଞm(Ĥ₊₊) Re(Ĥ₊₊ ℜe(Ĥ₊_) 0.2 0.2 Sm(H__) Sm(H_.) 0.1 0.1 େ(H₊₊) **ℜe(H₊₊)** n 0 ℜe(Ĥ_↓) (⁺⁺)m βe(H,,) $h(\widetilde{H}_{0+})$ 3m(H,,) 3m(Ĥ₊₊) îe(H₀,) Sm(H₀,) %e(Ĥ₀,) Sm(Ĥ₀,) %e(H__) 3m(H__) 3m(Ĥ_++) 3m(H,₁) ße(Ĥ__) 3m(Ĥ_,) βe(H̃₊₊) ßm(Ĥ__) βe(H₀,) %e(Ĥ₊₊) Ste(H₁₁ Sm(H HT NLO LT/LO $(t = -0.26 \text{ GeV}^2)$ Much better separation of H & Ht CFFs at LT/LO

(from -94% without positrons to -39% when electron and positrons are combined, in this t-bin)

Electrons only

Summary and conclusion

> Positrons are the unique way to unambiguously separate the DVCS² and

the BH-DVCS interference

> They will have a strong impact on GPD CFFs fits and extraction,

and the 3D-imaging program of the nucleon

- 77 PAC days of (unpolarized) positrons at I ≥ 5 mA requested to PAC48 (C2 conditionally approved)
- > Same setup (HMS+NPS) and kinematics of approved experiment E12-13-010

BACK-UP

DVCS process: leading twist ambiguity

- DVCS defines a preferred axis: light-cone axis
- At finite Q^2 and non-zero t, there is an ambiguity:
 - **1** Belitsky et al. ("BKM", 2002–2010): light-cone axis in plane (q, P)
 - 2 Braun et al. ("BMP", 2014): light-cone axis in plane (q,q')easier to account for kin. corrections $\sim O(M^2/Q^2)$, $\sim O(t/Q^2)$

$$\begin{aligned} \mathcal{F}_{++} &= & \mathbb{F}_{++} + \frac{\chi}{2} \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right] - \chi_0 \mathbb{F}_{0+} \\ \mathcal{F}_{-+} &= & \mathbb{F}_{-+} + \frac{\chi}{2} \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right] - \chi_0 \mathbb{F}_{0+} \\ \mathcal{F}_{0+} &= & -(1+\chi) \mathbb{F}_{0+} + \chi_0 \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right] \end{aligned} \right\} \xrightarrow{\mathbb{F}_{-+} = 0} \begin{cases} \mathcal{F}_{++} &= (1 + \frac{\chi}{2}) \mathbb{F}_{++} \\ \mathcal{F}_{-+} &= \frac{\chi}{2} \mathbb{F}_{++} \\ \mathcal{F}_{0+} &= \chi_0 \mathbb{F}_{++} \end{cases} \end{aligned}$$

(eg. $\chi_0 = 0.25$, $\chi = 0.06$ for $Q^2 = 2$ GeV², $x_B = 0.36$, t = -0.24 GeV²)

DVCS cross-section: $\varphi \& Q^2$

$$\mathcal{I} = \frac{i_0/Q^2 + i_1 \cos \varphi/Q + i_2 \cos 2\varphi/Q^2 + i_3 \cos 3\varphi/Q}{\mathcal{P}_1 \mathcal{P}_2}$$

$$\mathsf{DVCS}^2 = \frac{d_0/Q^2 + d_1 \cos \varphi/Q^3 + d_2 \cos 2\varphi/Q^4}{2}.$$

The product of the BH propagators reads:

$$\mathcal{P}_1 \mathcal{P}_2 = 1 + \frac{p_1}{Q} \cos \varphi + \frac{p_2}{Q^2} \cos 2\varphi.$$

Reducing to a common denominator ($\times \mathcal{P}_1 \mathcal{P}_2$), one obtains:

$$\mathcal{P}_{1}\mathcal{P}_{2}\mathcal{I} + \mathcal{P}_{1}\mathcal{P}_{2}\mathsf{DVCS}^{2} = \boxed{(i_{0} + d_{0})/Q^{2}} + d_{1}p_{1}/2/Q^{4} + p_{2}d_{2}/2/Q^{6} \\ + [i_{1}/Q + (p_{1}d_{0} + d_{1})/Q^{3} + (p_{1}d_{2} + p_{2}d_{1})/2/Q^{5}]\cos\varphi \\ + [i_{2}/Q^{2} + (p_{2}d_{0} + p_{1}d_{1}/2 + d_{2})/Q^{4}]\cos2\varphi \\ + [i_{3}/Q + (p_{1}d_{2} + p_{2}d_{1})/2/Q^{5}]\cos3\varphi \\ + [p_{2}d_{2}/4/Q^{6}]\cos4\varphi \,.$$

The $\mathcal I$ and DVCS² terms **mix at leading order in 1/Q** in the φ expansion