

DEMP Opportunities in Hall C

1) Determine the Pion Form Factor to high Q^2 :

• Indirectly measure F_{π} using the "pion cloud" of the proton t via p(e,e' π ⁺)n

 $|p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$

Extension of studies to Kaon Form Factor expected to reveal insights on hadronic mass generation via DCSB

2) Study the Hard-Soft Factorization Regime:

- Need to determine region of validity of hardexclusive reaction meachanism, as GPDs can only be extracted where factorization applies
- Separated $p(e,e'\pi^+/K^+)$ cross sections vs. Q^2 at fixed x to investigate reaction mechanism towards 3D imaging studies
- Extension of studies to u-channel p(e,e'p)ω can reveal hard-soft factorization at backward angle

Garth Huber, huberg@uregina.ca

Charged Pion Form Factor

- The pion is attractive as a QCD laboratory:
- Simple, 2 quark system

- The pion is the "positronium atom" of QCD, its form factor is a test case for most model calculations
- The important question to answer is: What is the structure of the π^+ at all Q^2 ?

Pion's structure is determined by two valence quarks, and the quark-gluon sea.

A program of study unique to Jefferson Lab Hall C (until the completion of the EIC)

Measurement of π^+ Form Factor – Larger Q^2

At larger Q^2 , F_{π} must be measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$

$$|p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$$

- At small -t, the pion pole process dominates the longitudinal cross section, σ_L
- In Born term model, F_{π}^{2} appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique

- 1.Isolating or experimentally challenging
- 2. Theoretical uncertainty in form factor extraction.

$p(e,e'\pi^+)n$ Event Selection

Coincidence measurement between charged pions in SHMS and electrons in HMS

Easy to isolate exclusive channel

- Excellent particle identification
- CW beam minimizes
 "accidental" coincidences
- Missing mass resolution easily excludes 2—pion z contributions

PionLT experiment E12–19–006 Data Q^2 =1.60, W=3.08, x= 0.157, ε=0.685 E_{beam} =9.177 GeV, P_{SHMS} =+5.422 GeV/c, θ_{SHMS} = 10.26° (left) Plots by Muhammad Junaid

$$2\pi \frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon + 1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

w u W University

- L-T separation required to separate σ_L from σ_T
- Need to take data at smallest available -t, so σ_L has maximum contribution from the π^+ pole
- Need to measure *t*-dependence of σ_L at fixed Q^2 , W

L/T-separation error propagation

Error in $d\sigma_L/dt$ is magnified by $1/\Delta \varepsilon$, where $\Delta \varepsilon = (\varepsilon_{Hi} - \varepsilon_{Low})$

 \rightarrow To keep magnification factor <5x, need $\Delta \epsilon$ >0.2, preferably more!

$$\frac{d^{2}\sigma}{dt\,d\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{T}}{dt} + \sqrt{2\,\varepsilon\,(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi_{\pi} + \varepsilon \frac{d\sigma_{TT}}{dt} \cos2\phi_{\pi}$$

$$\frac{\Delta\sigma_{L}}{\sigma_{L}} = \frac{1}{\left(\varepsilon_{1} - \varepsilon_{2}\right)} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{\left(R + \varepsilon_{1}\right)^{2} + \left(R + \varepsilon_{2}\right)^{2}} \qquad \text{where } R = \frac{\sigma_{T}}{\sigma_{L}}$$

$$\frac{\Delta\sigma_{T}}{\sigma_{T}} = \frac{1}{\left(\varepsilon_{1} - \varepsilon_{2}\right)} \left(\frac{\Delta\sigma}{\sigma}\right) \sqrt{\varepsilon_{1}^{2} \left(1 + \frac{\varepsilon_{2}}{R}\right)^{2} + \varepsilon_{2}^{2} \left(1 + \frac{\varepsilon_{1}}{R}\right)^{2}}$$

The relevant quantities for F_{π} extraction are R and $\Delta \varepsilon$

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Garth Huber, huberg@uregina.ca

Extract $F_{\pi}(Q^2)$ from JLab σ_L data

97(2006)19200

T. Horn et al.,

Model incorporates π^+ production mechanism and spectator neutron effects:

VGL Regge Model:

■ Feynman propagator $\left(\frac{1}{t-m_{-}^{2}}\right)$

replaced by π and ρ Regge propagators.

- Represents the exchange of a series of particles, compared to a single particle.
- Free parameters: Λ_{π} , Λ_{o} (trajectory cutoff)

[Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454]

• At small -t, σ_L only sensitive to F_{π}

$$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit to σ_L to model gives F_{π} at each Q^2

Error bars indicate statistical and random (pt-pt) systematic uncertainties in quadrature.

Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties.

 $\Lambda_{\pi}^2 = 0.513$, 0.491 GeV², $\Lambda_0^2 = 1.7$ GeV².

Current and Projected F_{π} Data

SHMS+HMS will allow measurement of F_{π} to much higher Q^2 .

No other facility worldwide can perform this measurement.

The pion form factor is the clearest test case for studies of QCD's transition from non perturbative to perturbative regions.

The ~17% measurement of F_{π} at Q²=8.5 GeV² is at higher $-t_{min}$ =0.45 GeV²

E12–19–006: D. Gaskell, T. Horn and G. Huber, spokespersons

The Charged Kaon – 2nd QCD test case

■ In hard scattering limit, pQCD predicts π^+ , K^+ form factors will behave similarly

$$\frac{F_K(Q^2)}{F_{\pi}(Q^2)} \xrightarrow{Q^2 \to \infty} \frac{f_K^2}{f_{\pi}^2}$$

■ Important to compare magnitudes and Q²—dependences of both form factors

Hadron Mass Budget

For more info: J.Phys.G **48**(2021)075106

- Proton mass large in absence of quark couplings to Higgs boson (chiral limit). Conversely, K and π are massless in chiral limit (i.e. they are Goldstone bosons).
- The mass budgets of these crucially important particles demand interpretation.
- Equations of QCD stress that any explanation of the proton's mass is incomplete, unless it simultaneously explains the light masses of QCD's Goldstone bosons, the π and K.
- Understanding π^+ and K^+ form factors over broad Q^2 range is central to this puzzle.

Projected Uncertainties for K⁺ Form Factor

 First measurement of F_K well above the resonance region.

- Measure form factor to Q²=3 GeV² with good overlap with elastic scattering data.
 - Limited by –t<0.2 GeV² requirement to minimize non–pole contributions.
- Data will provide an important second $q\overline{q}$ system for theoretical models, this time involving a strange quark.

E12–09–011: T. Horn, G. Huber and P. Markowitz, spokespersons

Upgrade Scenarios Considered

Phase 1: higher energy beam, keep HMS+SHMS as is

Various Phase 2 Scenarios:

- 1. Large upgrade to HMS momentum
 - 7 GeV/c → 14 GeV/c
 - Keep θ_{min} =10.50° (HMS)
- 2. Upgrade both HMS momentum and forward angle
 - 7 GeV/c → 11 GeV/c
 - θ_{min} =10.50° \to 7.5° (HMS)
 - $\theta_{\text{open}} = 18.00^{\circ} \rightarrow 15.00^{\circ}$
- 3. Keep HMS unchanged and upgrade SHMS momentum
 - 11 GeV/c → 15 GeV/c (SHMS)
 - Keep θ_{min} =5.50° (SHMS), θ_{open} =18.00°

Phase 1 Scenario: π^+ Form Factor

- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility, with no upgrades
 - Experiment could be done as soon as beam energy is available!
 - Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta

	10.6 GeV	18.0 GeV	Improvement in $\delta F_{\pi}/F_{\pi}$			
Q ² =8.5	Δε=0.22	Δε=0.40	16.8%→8.0%			
Q ² =10.0	New high quality F_{π} data					
Q ² =11.5	Larger F_{π} extraction uncertainty due to higher $-t_{\min}$					

	p(e,e'π ⁺)n Kinematics					
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$ heta_{ ext{q(SHMS)}} \ (\pi^+)$	P _{SHMS} (π ⁺)	Time FOM	
Q ² =	=8.5 W	/= 3.64	$-t_{min}$ =0.2	24 Δε=0).40	
13.0	34.30	1.88	5.29	10.99	64.7	
18.0	15.05	6.88	8.94	10.99	2.2	
Q ² =	10.0 <i>V</i>	V=3.44	$-t_{min}$ =0.	37 Δε=	0.40	
13.0	37.78	1.83	5.56	10.97	122.7	
18.0	16.39	6.83	9.57	10.97	4.5	
Q ² =	Q^2 =11.5 W=3.24 $-t_{min}$ =0.54 Δε=0.29					
14.0	31.73	2.75	7.06	10.96	82.4	
18.0	17.70	6.75	10.05	10.96	8.8	

Since quality L-T separations are impossible at EIC (can't access ε<0.95) this extension of L-T separated data considerably increases F_π data set overlap between JLab and EIC

Phase 1 Scenario: K⁺ Form Factor

- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility
- Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta
- Success depends on good K^+/π^+ separation in SHMS at high momenta, likely requires a modest aerogel detector upgrade
- Counting rates are roughly 10x lower than pion form factor measurement

	10.6 GeV	16.0 GeV	Improvement in $\delta F_{K}/F_{K}$			
Q ² =5.5	Δε=0.33	Δε=0.40	17.9%→10.7%			
Q ² =7.0	New high quality F_K data					
Q ² =9.0	Larger F_K extraction uncertainty due to higher - t_{min}					

	p(e,e'K ⁺)Λ Kinematics						
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$ heta_{q(SHMS)} \ (\pi^+)$	$P_{SHMS} \ (\pi^{\scriptscriptstyle +})$	Time FOM		
Q ² =	=5.5 W	′ =3.56	$-t_{min}$ =0.	32 Δε=0	0.40		
11.0	30.69	1.79	5.50	8.84	746		
16.0	12.92	6.79	9.18	8.84	150		
Q ² =	=7.0 W	′= 3.90	$-t_{min}$ =0.	33 Δε=0	0.29		
14.0	25.16	2.64	5.51	10.98	620		
18.0	13.91	6.64	7.85	10.98	192		
Q^2 =9.0 W =3.66 $-t_{min}$ =0.54 $\Delta \varepsilon$ =0.30							
14.0	29.17	2.54	5.98	10.97	964		
18.0	15.90	6.54	8.69	10.97	350		

- F_K feasibility studies at EIC are ongoing, but we already know that such measurements there are exceptionally complex.
- JLab measurements likely a complement to those at EicC.

Phase 1: Form Factor Projections

- Y-axis values of projected data are arbitrary
- The errors are projected, based on Δε from beam energies on earlier slides, and T/L ratio calculated with Vrancx Ryckebusch model
- Inner error bar is projected statistical and systematic error
- Outer error bar also includes a model uncertainty in the form factor extraction, added in quadrature
- F_{π} errors based on Fπ–2 and E12–19–006 experience
- $lacktriangleright F_K$ errors more uncertain, as E12–09–011 analysis not yet completed

14 GeV/c HMS Scenario: π^+ Form Factor

Replace HMS with a higher momentum spectrometer

- For high z reactions, such as DEMP, usable beam energy constrained by sum of HMS+SHMS maximum momenta
- i.e. 22 GeV beam energy is a larger constraint than the maximum HMS momentum
- New HMS would not extend the Q² reach beyond Scenario 1.
 However, it would result in smaller errors due to larger Δε and faster high ε data rates

	p(e,e'π ⁺)n Kinematics					
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$ heta_{ ext{q(SHMS}} \ (\pi^+)$	$P_{SHMS} \ (\pi^{\scriptscriptstyle +})$	Time FOM	
Q ² =	=8.5 W	/= 3.64	-t _{min} =0.	24 Δε=(0.53	
13.0	34.30	1.88	5.29	10.99	64.7	
22.0	10.81	10.88	10.23	10.99	0.6	
Q ² =	10.0 <i>V</i>	V=3.44	-t _{min} =0	.37 Δε=	0.54	
13.0	37.78	1.83	5.56	10.97	122.7	
22.0	11.76	10.83	10.97	10.97	1.3	
Q ² =	Q^2 =11.5 W=3.24 $-t_{min}$ =0.54 Δε=0.29					
14.0	31.73	2.75	7.06	10.96	82.4	
22.0	12.66	10.75	11.56	10.96	2.5	

■ This scenario is judged to not be worth it, at least for this reaction channel

Garth Huber, huberg@uregina.ca

Upgrade HMS Momentum and Angle: F_{π}

Upgrade both HMS momentum and forward angle capabilities

$$\theta_{\text{min}} = 10.50^{\circ} \rightarrow 7.5^{\circ}$$

$$\theta_{\text{open}} = 18.00^{\circ} \rightarrow 15.00^{\circ}$$

- This upgrade also does not extend the Q² reach beyond Scenario 1.
- However, it would result in smaller errors due to larger Δε and faster high ε data rates

	p(e,e'π ⁺)n Kinematics					
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$ heta_{q(SHMS)} \ (\pi^+)$	$P_{SHMS} \ (\pi^{\scriptscriptstyle +})$	Time FOM	
Q	² =8.5 V	<i>V</i> =3.64	$-t_{min}$ =0.2	24 Δε=0	.53	
13.0	34.30	1.88	5.29	10.99	64.7	
22.0	10.81	10.88	10.23	10.99	0.6	
Q ²	?=10.0	W= 3.44	$-t_{min}=0$.37 Δε=0	0.54	
13.0	37.78	1.83	5.56	10.97	122.7	
22.0	11.76	10.83	10.97	10.97	1.3	
Q ²	$Q^2=11.5$ $W=3.24$ $-t_{min}=0.54$ $\Delta \epsilon=0.29$					
14.0	31.73	2.75	7.06	10.96	82.4	
22.0	12.66	10.75	11.56	10.96	2.5	

 Basically the same as Scenario 2. Not worth it, at least for this channel

Garth Huber, huberg@uregina.ca

15 GeV/c SHMS Scenario: π^+ Form Factor

- Replace SHMS with higher momentum spectrometer, but keep HMS as is
- Dramatic increase in upper Q²
 11.5 → 15.0 GeV²
- Error bars for Q²=8.5–11.5 GeV² would substantially decrease due to smaller $-t_{\min}$ (better $R=\sigma_{\text{T}}/\sigma_{\text{L}}$) and shorter running times
- The Q²=15.0 GeV² point would be "expensive" in terms of running time, but its high scientific priority would make it worthwhile
- This seems a compelling scenario for a Phase 2 Upgrade

p(e,e'π ⁺)n Kinematics					
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$\theta_{q(SHMS)} \ (\pi^+)$	P _{SHMS} (π ⁺)	Time FOM
Q ² =	8.5 W	=4.06	$-t_{min} = 0.1$	7 Δε=0	.26
16.0	23.68	3.15	5.52	12.75	17.7
20.0	14.00	7.15	7.55	12.75	1.9
Q ² =	10.0 И	/=3.96	$-t_{min}$ =0.2	23 Δε=0	.28
16.0	27.41	2.78	5.41	13.09	47.7
20.0	15.60	6.78	7.72	13.09	4.5
Q ² =	11.5 И	/=3.96	$-t_{min}$ =0.2	29 Δε=0	.27
17.0	27.54	2.98	5.49	13.86	76.3
21.0	16.10	6.98	7.72	13.86	8.1
Q ² =	13.0 W	/=3.96	$-t_{min}$ =0.3	35 Δε=0).25
18.0	27.55	3.18	5.54	14.63	123.6
22.0	16.49	7.18	7.69	14.63	14.4
$Q^2=15.0 \ W=3.78 \ -t_{min}=0.50 \ \Delta \epsilon=0.27$					
18.0	31.30	2.86	5.46	14.87	391
22.0	18.14	6.86	7.86	14.87	41.4

20 GeV/c HMS Scenario: π^+ Form Factor

■ADDENDUM: Dave Mack suggests 20 GeV/c HMS' for π^+ , and SHMS for e'

- ■Assume θ_{min} =5.5°, θ_{open} =15.0°
- ■HMS': ΔΩ, ΔP/P similar SHMS
- ■Q² reach remains 15.0 GeV², with similar errors, although running times are increased due to $\Delta\Omega_{HMS}$ assumed smaller than $\Delta\Omega_{HMS}$
- $\theta_{HMS'}$ <5.5° allows improved Δε, but does not affect maximum Q² reach
- ■P_{HMS},=15.0 GeV/c is sufficient, constrained by max beam energy
- $■\theta_{SHMS}$ <12.0°, P_{SHMS} >9.0 not used
- A more feasible scenario for Phase 2 Upgrade

	p(e,e'π ⁺)n Kinematics						
E _{beam}	θ _{SHMS} (e')	P _{SHMS} (e')	$ heta_{q(HMS')} \ (\pi^+)$	P _{HMS} , (π ⁺)	Time FOM		
Q^2	=8.5 <i>V</i>	V=4.18	- <i>t_{min}</i> =0.1	5 Δε=0	.28		
17.0	21.39	3.63	5.55	13.29	20.5		
22.0	12.15	8.63	7.62	13.29	1.8		
Q ² =	=10.0	<i>W</i> =4.08	$-t_{min}$ =0.2	21 Δε=0	.30		
17.0	24.49	3.27	5.52	13.62	53.3		
22.0	13.46	8.27	7.85	13.62	4.3		
Q ² =	=11.5	W=3.95	$-t_{min}$ =0.2	29 Δε=0).31		
17.0	27.34	3.03	5.55	13.82	124.8		
22.0	14.66	8.03	8.12	13.82	9.3		
Q ² =	=13.0 l	<i>V</i> =3.96	$-t_{min}$ =0.3	35 Δε=0).25		
18.0	27.55	3.18	5.54	14.63	209.5		
22.0	16.49	7.18	7.69	14.63	24.4		
$Q^2=15.0 W=3.73 -t_{min}=0.52 \Delta \epsilon=0.26$							
18.0	30.24	3.06	5.73	14.66	560		
22.0	17.88	7.06	8.07	14.66	65.7		

Importance of JLab F_{π} in EIC Era

- Quality L/T-separations impossible at EIC (can't access ε<0.95)
- JLab will remain ONLY source of quality L-T separated data!
- Phase 2: 22 GeV beam with upgraded HMS'
 - Extends region of high quality F_{π} values to Q²=13 GeV²
 - Somewhat larger errors to Q²=15 GeV²
- \blacksquare Provides MUCH improved overlap of F_π data set between JLab and EIC!

Hard–Soft Factorization in DEMP

- To access physics contained in GPDs, one is limited to the kinematic regime where hard-soft factorization applies
 - No single criterion for the applicability, but tests of necessary conditions can provide evidence that the Q² scaling regime has been reached
- One of the most stringent tests of factorization is the Q² dependence of the π/K electroproduction cross sections

- σ_T does not, expectation of Q⁻⁸
- As Q² becomes large: σ_L >> σ_T

- Experimental validation of onset of hard scattering regime is essential for reliable interpretation of JLab GPD program results
 - Is onset of scaling different for kaons than pions?
 - K^+ and π^+ together provide quasi model-independent study

DEMP Q⁻ⁿ Hard–Soft Factorization Tests

Х	Q ² (GeV ²)	W (GeV)	−t _{min} (GeV²)
0.31	1.45-3.65	2.02-3.07	0.12
	1.45-6.5	2.02-3.89	
0.39	2.12-6.0	2.05-3.19	0.21
	2.12-8.2	2.05-3.67	
0.55	3.85-8.5	2.02-2.79	0.55
	3.85–11.5	2.02-3.23	

X	Q ² (GeV ²)	W (GeV)	−t _{min} (GeV²)
0.25	1.7–3.5	2.45-3.37	0.20
	1.7–5.5	2.45-4.05	
0.40	3.0-5.5	2.32-3.02	0.50
	3.0-8.7	2.32-3.70	

PHASE 1 SCENARIO

Q⁻ⁿ scaling test range nearly doubles with 18 GeV beam and HMS+SHMS

Hard–Soft Factorization in Backward Exclusive π^0

p(e,e'p)X KaonLT Data Analysis

 $Q^2=3.00$ W=2.32 $\theta_{pq}=+3.0^{\circ}$ -u=0.15 $\xi_{\rm u}=0.15$

- Fortuitous discovery of substantial backward angle meson production during meson form factor experiments
- Can be described by extension of collinear factorization to backward angle (u-channel)
- Backward angle factorization first suggested by Frankfurt, Polykaov, Strikman, Zhalov, Zhalov [arXiv:hep-ph/0211263]

Spokespersons: W.B. Li, G.M. Huber, J. Stevens

Purpose: test applicability of TDA formalism for π^0 production

23

Staged Upgrade Seems Logical

- Phase 1: Upgrade Beam to 18 GeV, minor upgrades of SHMS, HMS PID, tracking and DAQ
 - Example Measurements:
 - Pion form factor to Q²=10 GeV² with small errors, and to 11.5 with larger uncertainties
 - Kaon form factor to Q²=7.0 GeV² with small errors, and to 9.0 with larger uncertainties
 - Hard—Soft Q^{-n} factorization tests with $p(e,e'\pi^+)n$ and $p(e,e'K^+)\Lambda$
 - Studies of backward angle Q⁻ⁿ factorization via u-channel p(e,e'p)π⁰ and p(e,e'p)ω
- Phase 2: Upgrade Beam to 22 GeV, upgrade HMS' to 15 GeV/c
 - This would enable a significant increase in Q² reach of quality L–T separations for Deep Exclusive Meson Production
 - e.g. Pion Form factor up to Q²=15 GeV²

The importance of L-T Separations

- Hall C is the world's only facility that can do L–T separations over a wide kinematic range
- The error magnification in L–T separations depends crucially on the achievable difference in the virtual photon polarization parameter, ε.
 - Errors magnify as $1/\Delta ε$, where $\Delta ε = ε_{High} ε_{Low}$
 - To keep the magnification <500%, one desires $\Delta \varepsilon$ >0.2
 - This is not feasible at the EIC, as the high ion ring energy constrains ε>0.98
 - Thus, Hall C will remain the world's main source of L–T separated data well into the EIC era
- As the interpretation of some EIC data (e.g. GPD extraction) will depend on extrapolation of Hall C L–T separated data, maximizing the overlap between the Hall C and EIC data sets should be a high priority

New Collaborators Welcome!

- We are looking to identify interested groups of collaborators for Hall C Future Studies
- If you are interested, please contact any of the KaonLT / PionLT / u–Channel Leaders:
 - Dave Gaskell, JLab
 - Tanja Horn, CUA
 - Stephen Kay, Regina
 - Wenliang (Bill) Li, Stony Brook
 - Pete Markowitz, FIU
 - GH, Regina

PDF position available

Contribute to this program and more!

- Excellent opportunity for those who are looking forward to a permanent academic position in the future, to strengthen their research and teaching resumes and gain valuable experience in the classroom.
- High priority experiments in Deep Exclusive Meson Production at Jefferson Lab Hall C
- Feasibility studies to extend these measurements to higher energy at the EIC
- Cherenkov detector development for the Solenoidal Large Intensity Device (SoLID) in Jefferson Lab Hall A.
- Position is for a 3-year term. Upon mutual agreement, there is possibility of a further 2-year extension. Comprehensive benefits package is included.
- Further information: http://lichen.phys.uregina.ca
- Application portal: https://urcareers.uregina.ca/postings/11172
- Contact me at huberg@uregina.ca