Search for a Nonzero Strange Form Factor of the Proton at 2.5 (GeV/c)²

Caryn Palatchi Hall C Meeting 1/13/23 **U** Indiana University

Jefferson Lab

Search for a Nonzero Strange Form Factor of the Proton at 2.5 (GeV/c)²

Collaborators

• Bogdan Wojtsekhowski (spokesperson-contact)

• Rakitha Beminiwattha

• Kent Paschke

Jefferson Lab

UNIVERSITY of VIRGINIA

Charge symmetry and the nucleon form factors

Charge symmetry is assumed for the form factors, $G_E^{u,p} = G_E^{d,n}$, etc. and used to find the flavor separated form-factors, measuring $G_{E,M}^{p,n}$ to find $G_{E,M}^{u,d}$

$$G_E^p = \frac{2}{3}G_E^{u,p} - \frac{1}{3}G_E^{d,p} - \frac{1}{3}G_E^s$$
$$G_E^n = \frac{2}{3}G_E^{u,n} - \frac{1}{3}G_E^{d,n} - \frac{1}{3}G_E^s$$

But this can broken! One way is to have a non-zero strange form-factor, which breaks the "2 equations and 2 unknowns" system

The weak form factor provides a third linear combination:

A strange quark form factor would be indistinguishable from a broken charge symmetry in u,d flavors

 $\delta G_E^u \equiv G_E^{u,p} - G_E^{d,n}$ $\delta G_E^d \equiv G_E^{d,p} - G_E^{u,n}$

So, more generally: this experiment tests the assumption of charge symmetry which is crucial to the flavor decomposition of the form factors

Strangeness form factors

TIT

$$\begin{split} A_{PV} &= -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \cdot \left[(1 - 4\sin^2\theta_W) - \frac{\epsilon G_E^p G_E^n + \tau G_M^p G_M^n}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} - \frac{\epsilon G_E^p G_E^s + \tau G_M^p G_M^s}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \right] \\ &+ \epsilon' (1 - 4\sin^2\theta_W) \frac{G_M^p G_A^{Zp}}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \end{split}$$

 A_{PV} = 150 ppm at θ = 15.5°, Q^2 = 2.5 GeV² (for sFF = 0)

$$A_{PV}$$
 = (-226 ppm) *[0.075 + 0.542 - 6.43*(G_M^s + 0.32 G_E^s) + 0.038]

Q_w EMFF

axial

Caryn Palatchi, Hall C Meeting 1/13/23 4

Breakdown of U/D scaling at larger Q²

FIG. 3: The Q^2 -dependence for the *u*- and *d*-contributions to the proton form factors (multiplied by Q^4). The data points are explained in the text.

Flavor decomposition of the elastic nucleon electromagnetic form factors

G.D. Cates, 1 C.W. de Jager, 2 S. Riordan, 3 and B. Wojtsekhowski $^{2,\,*}$

¹University of Virginia, Charlottesville, VA 22903 ²Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 ³University of Massachusetts, Amherst, MA 01003 (Dated: March 6, 2011)

The *u*- and *d*-quark contributions to the elastic nucleon electromagnetic form factors have been determined using experimental data on $G_{\rm E}^n$, $G_{\rm M}^n$, $G_{\rm E}^p$, and $G_{\rm M}^p$. Such a flavor separation of the form factors became possible up to 3.4 GeV² with recent data on $G_{\rm E}^n$ from Hall A at JLab. At a negative four-momentum transfer squared Q^2 above 1 GeV², for both the *u*- and *d*-quark components, the ratio of the Pauli form factor to the Dirac form factor, F_2/F_1 , was found to be almost constant, and for each of F_2 and F_1 individually, the *d*-quark component drops continuously with increasing Q^2 .

- Why is there a breakdown of U/D scaling at > 1 GeV²
- Diquark?
 - "In the framework of Dyson-Schwinger equation calculations, the reduction of the ratios F_1^{d}/F_1^{u} and F_2^{d}/F_2^{u} at high Q^2 is related to diquark degrees of freedom"
- Unless there's something strange going on....

$$F_{1} = \frac{G_{E} + \tau G_{M}}{1 + \tau} F_{2} = -\frac{G_{E} - G_{M}}{1 + \tau}$$
$$\tau = Q^{2}/4M^{2}$$

Strange FF zero at high Q²?

• How will SFF impact flavor decomposition of the nucleon FF at higher Q²?

Strange form-factor predictions

T.Hobbs & J.Miller, 2018

Conclusion: sFF small (but non-zero) at low Q^2 , but quite reasonable to think they may grow relatively large at large Q²

 $G_D = 0.0477$ at 2.5 GeV² uncertainty here ranges from (0.036,-0.051)

 $G_s/G_D \sim 1$ is not excluded

Follows work from Phys.Rev.C 91 (2015) 3, 035205 (LFWF to tie DIS and elastic measurements in a simple model)

Tim Hobbs and Jerry Miller have both joined the collaboration

Strange form-factors on the lattice

0.8

Caryn Palatchi, Hall C Meeting 1/13/23 9

Experimental concept

- Elastic kinematics between electron and proton
- Full azimuthal coverage, ~42 msr
- High resolution calorimeter for electron arm
- Angular correlation e-p

- 6.6 GeV beam
- Scattered electron at 15.5 degrees
- Scattered proton at 42.4 degrees
- 10 cm LH₂ target, 60 μ A, $\mathcal{L} = 1.6 \times 10^{38} \text{ cm}^{-2}/\text{s}$

Detector System

HCAL - hadron calorimeter

- Reassembled from detector elements from the SBS HCAL
- 288 blocks, each 15.5 x 15.5 x 100 cm³
- iron/scintillator sandwich with wavelength shifting fiber readout

ECAL - electron calorimeter

- Reassembled from detector elements from the NPS calorimeter
- 1000 blocks, each 2 x 2 x 20 cm³
- PbWO₄ scintillator

Scintillator array

- Used for improved position resolution in front of HCAL
- Not used to form trigger
- 7200 blocks, each 3 x 3 x 10 cm³
- Lead shield in front (thickness to be optimized) to reduce photon load

Calorimeters reusing components

NPS electromagnetic calorimeter

- 1080 PBWO₄ scintillators, PMTs + bases
- will run in future NPS experiment

SBS hadronic calorimeter

- 288 iron/scintillator detectors, PMTs + bases
- Already in use with SBS

Scintillator Array

- New detector, must be built for this experiment
- Extruded plastic scintillator block
- Readout with wavelength-shifting fiber
- Each fiber read by pixel on multi-anode PMT
- Originally proposed for 2x2 cross-section, but 3x3 provides sufficient resolution
- 7200 blocks, each 3 x 3 x 10 cm³

Design matches scintillator array built for GEP

- 2400 elements, 0.5 x 4 x 50 cm³
- Already built, will run soon

Triggering and Analysis

Grouping into "subsystems" for energy threshold and coincidence triggering

- each polar column of detectors, overlapping with neighbors
- sum amplitude with conservative coincidence timing window
- compare to conservative energy threshold
- •trigger when complementary (ECAL and HCAL) subsystems are both above threshold

Electron subsystems

Proton subsystems

- 1000 PbWO₄ crystals
- 2x2x20 cm³
- 5x5 grouping for subsystem
- 200 overlapping subsystems

- 288 iron/scintillators
- 15.5x15.5x100 cm³
- 3x3 grouping for subsystem
- 96 overlapping subsystems

Subsystems adjacent crystals

Rates and Precision

Beam and target: 60 uA on 10 cm LH₂ => luminosity is 1.6×10^{38} cm⁻²/s

Trigger (online)

- Elastic 37 kHz signal in full detector
- Inelastic (pion production) coincidence trigger rate ~10 kHz
- Accidental coincidence rate < 0.2 kHz
 - ~60 kHz total singles rate in ECAL > 5 GeV energy threshold
 - ~1.2MHz total singles rate in HCAL > 50 MeV energy threshold
- Temporal coincidence cut 40ns
- ~50 kHz total coincidence trigger rate

Offline analysis

- clustering, scintillator array to improve geometric cuts, tighter acceptance and ECAL cut, 4ns timing
- Accepted elastic signal reduced to 14 kHz production statistics
- Inelastic (pion production) <0.5%, accidentals <1x10⁻⁵ due to higher E cut, angular precision

Beam polarization 85% 30 days runtime \longrightarrow Raw asymmetry statistical precision $\delta(A_{raw}) \sim 5 \text{ ppm}$ $\longrightarrow A_{PV} = -150 + /-6.2 \text{ ppm}$

Error budget

Apv expected to be -150 ppm (without Strange FF)

quantity	value	contributed uncertainty	Polarimetry prec
Beam polarization	$85\%\pm1.5\%$	1.8%	than 1% has bee
Beam energy	6.6 + / - 0.003 GeV	0.1%	multiple experim
Scattering angle	$15.5^\circ\pm0.03^\circ$	0.4%	
Beam asymmetries	<100 nm,<10 ppm	0.2%	
Backgrounds	< 0.5%	0.5%	
$G_E^n/G_{ m Dipole}$	0.41 ± 0.04	0.6%	
$G_E^p/G_{ m Dipole}$	0.75 ± 0.02	0.5%	
G_{Mn}/G_{Dipole}	1.01 ± 0.02	1.7%	
$G_M^p/G_{ m Dipole}$	1.08 ± 0.01	0.9%	
$G_A^{\widetilde{Zp}}/G_{ m Dipole}$	-0.15 ± 0.02	0.9%	
Total systematic uncertainty:		3.0%	or 4.5 ppm

recision better peen achieved for eriments)

Statistical precision for A_{PV} : 6.2 ppm (4.1%)

With 30 days of production running ٠

There is also an uncertainty from radiative correction, is small except for a dominant "anapole" piece. If the anapole uncertainty is not improved, this would contribute at additional 4.1 ppm (2.7%) uncertainty

Axial FF Contributions

 $A_A = (1 - 4\sin^2\theta_W)\epsilon' G_M^p \tilde{G}_A$

K. Park *et al.* [CLAS Collaboration], Phys. Rev. C **85**, 035208 (2012).

• Axial form factor parameterization $G_A{}^p = 0.15$ at $Q^2 = 2.5 \text{ GeV}^2$ C. Chen, C. S. Fischer, C. D. Roberts, and J. Segovia, Form factors of the

C. Chen, C. S. Fischer, C. D. Roberts, and J. Segovia, Form factors of the nucleon axial current, Physics Letters B 815, 136150 (2021)

- Confirmed with pion photoproduction measurements K. Park *et al.* [CLAS Collaboration], Phys. Rev. C **85**, 035208 (2012).
 - (~15% interpretation uncertainty)

I.V. Anikin, V.M. Braun, and N. Offen, Phys.Rev.D 94 (2016) 3, 034011.

- How uncertain is this measurement because of it?
 - Axial term $\sim 6\%$ of A_{PV}
 - ~15% uncertainty, so estimate **1% relative uncertainty** on the 4% statistical measurement

Projected result

 $\delta A_{PV} = \pm 6.2 \text{ (stat)} \pm 4.5 \text{ (syst)}$

 $\delta \left(G_E^s + 3.1 G_M^s \right) = \pm 0.013 \text{ (stat) } \pm 0.010 \text{ (syst)} = 0.016 \text{ (total)}$

If $G_M^s = 0$, $\delta G_E^s \sim 0.016$, (about 34% of G_D) If $G_E^s = 0$, $\delta G_M^s \sim 0.0052$, (about 11% of G_D)

The proposed measurement is especially sensitive to G_{M^s}

The proposed error bar reaches the range of lattice predictions, and the empirically unknown range is much larger.

Summary

Search for a Nonzero Strange Form Factor of the Proton at 2.5 $(GeV/c)^2$

- 10+ years after the last sFF searches were performed, a new experiment is proposed for much higher Q2, motivated by interest in flavor decomposition of electromagnetic form factors
- Measurement of A_{pv} in e-p scattering at high $Q^2 = 2.5 \text{ GeV}^2$ with projected accuracy of 11% of the dipole value
- The proposed error bar is in the range possibly suggested by lattice predictions, and significantly inside the range from the simple extrapolation from previous data
- Coincidence-Parity measurement with highly segmented calorimeters
- Goal: Confirm whether Strange Form Factor is zero or non-zero in this kinematic, region
- Result informs the breakdown of U/D scaling
- These results will be crucial to support the interpretation of the nucleon formfactors as constraints on GPDs
- Allows for flavor decomposition at high Q^2

S