

LT Separation Experiments in Hall C

Presented by Nathan Heinrich

Representing the Pion-LT and Kaon-LT Collaborations

2023 Winter Meeting

Outline

- Talk covers both PionLT and KaonLT experiments
- Will give updates on progress
- PionLT Finished taking data
- KaonLT is beginning to do the first LT separations

Pion-LT

- Finished taking data in the fall
- Just beginning Process of data analysis
- Got all of our requested data
 - Thanks to all of the Hall C and Accelerator staff as well as the shift workers and run coordinators that made it possible!

Projected Data

- With the data in hand updated error estimates can be done.
- Encouragingly the relative error of most points has increased by <1%
- With exception of the $Q^2 = 8.5 \text{ GeV}^2$ and $Q^2 = 6 \text{ GeV}^2 \pi^2$ point.
 - These increase by 4% and 7% when compared to the PAC Proposal

Rosenbluth Separation

$$2\pi \frac{d\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

- LT experiments seek to separate the total cross sections into the components of the photon polarization.
- To do this need to have full φ coverage at 2 values of ε while keeping other kinematics (Q², W, t) fixed.

Data Quality Checks

- During the experiment plots were made to monitor data quality
- Will be used to gauge the quality of any improvements to the analysis
- Diamond Plot to show Q^2 and W overlap for all ϵ values of a setting.

Online Plots Continued

First Steps of PionLT Analysis

- Detector calibration is underway
- Analysis of Magnetic Optics from our data has begun:
 - See Jacob Murphy's talk Tomorrow at 10 am
- This experiment took a wide range of Luminosity and Heep data.
 - If others are interested please contact the spokespersons!
- Garth Huber: huberg@uregina.ca,
- Tanja Horn: hornt@cua.edu,
- Dave Gaskell: gaskelld@jlab.org

Pulse Integral PMT1 quad4

Example HGC Calibration Plot

Kaon-LT

- This experiment finished running in spring 2019
- Been hard at work analyzing the data ever since.
- Finalizing all the efficiencies
- Commissioning experiment, learned a lot about the SHMS
- Beginning cross-section extraction

9/19

Challenges of KaonLT Commissioning Experiment

Tracking

- Tracking algorithm was initially insufficient for the high precision hadron tracking required
- Detailed Track Parameter Optimization and Rate Dependence Study done by Ali Usman with help from Peter Bosted and Mark Jones an improved algorithm was implemented (Commissioning meeting <u>2021/04/01</u>, <u>2021/05/18</u>)

EDTM and Prescaling

- EDTM calculation is made complex when prescaling is involved
- Further EDTM data taken during PionLT helped develop a rigorous formula for the EDTM calculation
- See Jacob Murphy and Richard Trotta's talks at the <u>Hall C Quarterly Analysis Meeting</u>

HCANA vs SIMC calculations

- Discrepancies in the calculations used in HCANA vs those used SIMC resulted in differing distribution for high level physics variables
- Changes to SIMC calculations are being implemented so this shouldn't be an issue for future groups
- Should be topic of future Analysis Meeting.

EDTM Live Time Correction:

$$TLT^{\#} = \frac{EDTM_{acc}^{\#}}{C^{\#} * EDTM_{sent}}$$

10/19

Finalizing Yields

To Finalize Yields must finalize all Efficencies: This is nearly finished for Kaon-LT

LT Separations – Progress Report

• **Step 0.1** – finalize all efficiencies\yields for all settings.

Any changes to the yield after beginning the process will require restarting all over again.

- Step 0.2 pick t bins
- **Step 1** pick functional form of cross section parameterization and compare simc fit to data

Step 2 - Combine SHMS Settings

- Add together Left, Center, Right SHMS settings at high and low ε, for each (W,Q²,t,φ,ε) bin for both both Data
 and Monte Carlo (MC)
- Obtain Yields for both Data and MC, for each (W,Q²,t,φ,ε) bin

Step 3 – Calculate average kinematics

- Find the mean values of W, Q^2 , θ , and ϵ for each t bin.
- Average of high and low ε is used, as they will differ slightly

Step 4 – Carefully inspect the Data/SIMC Ratios

 Ratio of Data to MC Yield (R=Y_{exp}/Y_{MC}) should be R~1 over a broad range of kinematics.

Step 5 – Calculate unseparated Cross-sections

- Using the parameterization, evaluate cross-section at average value of kinematic.
- This procedure comes from Blok et al, PRC 78 (2008) 045202

were fitted. For all five t bins at every (central) Q^2 setting, ϕ -dependent cross sections were determined at both high and low ϵ for chosen values of \overline{W} , \overline{Q}^2 (and corresponding values of θ_{π} and ϵ) according to

$$\sigma_{\exp}(\overline{W}, \overline{Q}^2, t, \phi; \overline{\theta}, \overline{\epsilon}) = \frac{\langle Y_{\exp} \rangle}{\langle Y_{\sin} \rangle} \sigma_{\mathrm{MC}}(\overline{W}, \overline{Q}^2, t, \phi; \overline{\theta}, \overline{\epsilon}).$$
(14)

The fitting procedure was iterated until σ_{exp} changed by less than a prescribed amount (typically 1%). A representative

Step 6 – fit Rosenbluth Equation

Step 7 – Iterate Cross section Model

- Update the model and return to step 1
- Repeat until model is self consistent

(deg)

Outlook

- Pion-LT just finished taking data
 - Progress is being made on Analysis
- Kaon-LT Is beginning Cross-section extraction
 - Expect publishable results before the end of this year!

Thank You

Thanks To All Our Collaborators

Iteration procedure summary

