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Data Science Pillars

* Applications:
* Nuclear Physics
e Advanced computing
* Health & Climate

Applications

 Focused Methods & Algorithms:

* Uncertainty Quantification Methods & Algorithms
* Interpretability and Explainability
* Design & Control

e Infrastructure:
e JLab ML & Data Hub
e JLab Data Science software

Infrastructure
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Data Science Infrastructure

JLab DS
Software Hub

INVENIO

Powering Open\Science
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Data Science Methods & Algorithms

Domain-aware

H leveraging & respecting
SCIM_L scientific domain knowledge
Foundations

Machine
Learning
for Advanced
Scientific
Computing

Research Robust

stable, well-posed &
reliable formulations

Interpretable

explainable & understandable results

Figure 1: Foundational research themes of SciML must tackle the challenges of creating domain-

physical principles & symmetries
physics-informed priors
structure-exploiting models

model selection
exploiting structure in high-dim data
uncertainty quantification + ML

probabilistic modeling in ML
quantifying well-posedness
reliable hyperparameter estimation

aware, interpretable, and robust ML formulations, methods, and algorithms.

Data-intensive
scientific inference & data analysis

Machine ML-enhanced
modeling & sim

Learnmg ML-hybrid algorithms and models
for Advanced for better scientific computing tools

Scientific
Computing Intelligent automation

Research & decision support

automated decision support,
adaptivity, resilience, control

Figure 2: Opportunities for SciML impact arise in scientific inference and data analysis; in ML-
enhanced modeling and simulation; in intelligent automation and decision support; and in related

applications.

ML methods for multimodal data
in situ data analysis with ML
ML to optimally guide data acquisition

ML-enabled adaptive algorithms
ML parameter tuning
ML-based multiscale surrogate models

exploration of decision space with ML
ML-based resource mgt & control
optimal decisions for complex systems

Uncertainty
Quantification
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Applications in Experimental Halls

* Developing a JLab ML Hub to capture the workflow and artifacts

* Incorporating uncertainty quantification in ML models
— Hall A:
 Particle ID w/ UQ for SoLID
— Hall B: Several discussions
— Hall C: Working with Tanja Horn and Cristiano Fanelli to define effort
— Hall D:
« Gaussian Process method for AIEC controls
« Develop some ML-based models for Particle ID for CPP
—Hall E:
« Contribute to AI4EIC workshops

« Working to define a long term plan with Cristiano Fanelli (new bridge position at W&M)
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External Applications

Al/ML for Spallation Neutron Source at ORNL.:
— Anomaly detection and fault prognostication
Data-Driven Decision Control for Complex Systems (DnC2s):

— Risk-averse reinforcement learning

— Distance aware/preserving uncertainty quantification for
ML-based regression

Multi-objective RL for CEBAF

— Accelerator and data science collaboration

Hampton Roads Digital Twin:

— Health and climate resiliency studies

SciDAC project:
— Theory, experiment, data science Integration
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Al@DOE Executive Summary

« Top R&D priorities:

1.

o0k W

Incorporate prior knowledge into Al systems

Training for rare events

Explainability, interpretability and understanding

Automation and optimization -- self-driving labs, hypothesis generation
Targeted algorithm development -- development focused on DOE missions
Sustainable Al -- energy-efficient solutions (green Al)

* Enablers:
— Underlying ecosystem to enable Al R&D -- virtual Al user facility

— Ethics framework to guide Al R&D - identify unexpected biases
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Al for Science and Security

« Three topical Al for Science & Security workshops recently held to discuss a long-term
vision:
1. June — Al Surrogates, Al for Complex Systems
2. July — Properties and Inverse Design, Foundation Models

3. August — Autonomous Discovery, Al for Programming

* |Interesting themes:
— Reinforcement learning for complex controls
— ML-based surrogate models and digital twins
— Uncertainty quantification (UQ), verification & validation (V&V), and guaranties
— Building in physical constraints and relationships into the ML models

— Integrating ML-based function surrogates with UQ & guaranties into code and
simulations

— Combined data and Al models management
— Trustworthiness, robustness, and explainability
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Ongoing and forward looking

» Scalable Distributed Learning

— In order to efficiently train over from large dataset, the need for a distributed Multimodal Data Common Embedding Space
learning computing infrastructure will likely be required.
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Uncertainty Quantification

* Understanding how to
include UQ in deep ML
models

* Include OOD
uncertainties
* Auto-calibration

* Applications:

e Data driven ML-based
surrogate models

e Real time controller

 Anomaly detections

* Considerations for
hardware constraints

* Memory, Time,
Performance trade-off

Amplitude
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Uncertainty quantification for accelerator anomaly detection at SNS ORNL

e Results from similarity model showed a ~“4x improvement in performance over
previously published results

e The ROC curve shows nearly the same level of performance (not optimized)

 We introduced an out-of-domain anomaly, labelled 1111 (red), the UQ-based
model correctly identified the anomaly and indicated high uncertainty.
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Uncertainty quantification for data driven ML-based surrogate models in risk
averse control research

Quantile regression method have great performance in training distribution and are
calibrated by definition, however, they do not perform as well for OOD estimation
* BNN model provides does a better job to estimate OOD but require calibration
 DGPA model provide the best OOD estimation and is calibrated by design
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Interpretability, Explainability, and Robustnhess

* Applying and developing techniques to better
understand model predictions and stability

* Gradient activation studies to understand what
the model is focusing on

* Loss landscape analysis to better understand the
model stability
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Activation Study and Fault Classifications at SNS ORNL

e Applied GradCAM analysis on trained ML-based model for errant beam prediction

* |dentifies sections of the waveform most relevant for a particular decision from the model

 The GradCAM vectors are reduced to 2-dimensional space using clustering algorithm

* Clear clusters between normal and anomaly samples with some anomalies appearing in normal
group

 The anomaly sub-clusters may belong to different equipment failures
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Design & Control

* Advance applications for design

& control

* Bayesian Optimization
* Risk Averse and UQ aware
Reinforcement Learning
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Near real-time control and calibration for the GlueX CDC ﬁ‘ﬁEPSCI

EXPerimenTtaul PHYSICS
SOFTWare anb compPuUuTING

Accelerate the calibration from month(s) to minute(s). INFrasTrucTure
1. Gain Correction Factor: CDC Voltage Gain calibration
2. Time to Distance: track fitting calibration 3 fg; deuteron |l 12
o P 3
Calibration is required to provide reliable PID for > 16 9
. . X 14
physics analysis x 12 107
Considerations: L 10 §
1. External environmental conditions (temperature, 6 & 10
pressure) . _ e S
2. Changing beam conditions (current) CeF T 9 5 s A
Momentum (GeV/c)
ATMOSPHERIC
PRESSURE
GAS
TEMPERATURE
1 2 3 /7
PREDICTION CALBRATION CONTROL Jefferson Lab
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Atm. Pressure (kPa)

Stabilizing Gain in the Central Drift Chamber

 Peak heights from Gaussian Process side
of the CDC show dramatic reduction in
pressure dependence compared to
constant HV
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