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Data Science Pillars
• Applications:

• Nuclear Physics
• Advanced computing
• Health & Climate

• Focused Methods & Algorithms:
• Uncertainty Quantification
• Interpretability and Explainability
• Design & Control

• Infrastructure:
• JLab ML & Data Hub
• JLab Data Science software

Applications

Methods & Algorithms

Infrastructure
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Figure 1: Foundational research themes of SciML must tackle the challenges of creating domain-
aware, interpretable, and robust ML formulations, methods, and algorithms.
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Figure 2: Opportunities for SciML impact arise in scientific inference and data analysis; in ML-
enhanced modeling and simulation; in intelligent automation and decision support; and in related
applications.
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applications.
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Applications in Experimental Halls 

• Developing a JLab ML Hub to capture the workflow and artifacts 

• Incorporating uncertainty quantification in ML models
－Hall A:

• Particle ID w/ UQ for SoLID

－Hall B: Several discussions 
－Hall C: Working with Tanja Horn and Cristiano Fanelli to define effort
－Hall D: 

• Gaussian Process method for AIEC controls
• Develop some ML-based models for Particle ID for CPP 

－Hall E:
• Contribute to AI4EIC workshops
• Working to define a long term plan with Cristiano Fanelli (new bridge position at W&M)
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External Applications

• AI/ML for Spallation Neutron Source at ORNL:
－Anomaly detection and fault prognostication 

• Data-Driven Decision Control for Complex Systems (DnC2s):
－Risk-averse reinforcement learning
－Distance aware/preserving uncertainty quantification for 

ML-based regression

• Multi-objective RL for CEBAF
－Accelerator and data science collaboration

• Hampton Roads Digital Twin:
－Health and climate resiliency studies

• SciDAC project:
－Theory, experiment, data science Integration
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AI@DOE Executive Summary

• Top R&D priorities:
1. Incorporate prior knowledge into AI systems
2. Training for rare events
3. Explainability, interpretability and understanding
4. Automation and optimization -- self-driving labs, hypothesis generation
5. Targeted algorithm development -- development focused on DOE missions
6. Sustainable AI -- energy-efficient solutions (green AI)

• Enablers:
－Underlying ecosystem to enable AI R&D -- virtual AI user facility
－Ethics framework to guide AI R&D – identify unexpected biases
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AI for Science and Security

• Three topical AI for Science & Security workshops recently held to discuss a long-term 
vision:

1. June – AI Surrogates, AI for Complex Systems
2. July – Properties and Inverse Design, Foundation Models
3. August – Autonomous Discovery, AI for Programming

• Interesting themes:
－Reinforcement learning for complex controls
－ML-based surrogate models and digital twins
－Uncertainty quantification (UQ), verification & validation (V&V), and guaranties
－Building in physical constraints and relationships into the ML models
－Integrating ML-based function surrogates with UQ & guaranties into code and 

simulations
－Combined data and AI models management
－Trustworthiness, robustness, and explainability
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Ongoing and forward looking

• Scalable Distributed Learning
－ In order to efficiently train over from large dataset, the need for a distributed 

learning computing infrastructure will likely be required. 

• Uncertainty quantification for deep learning models
－ Detailed study of uncertainty estimation techniques for AI/ML in NP 

applications as it relates to higher dimensionality and unique modalities.
－ Applications of UQ ML models on edge hardware  (under constraint)

• Computing co-design for AI/ML and NP
－ AI/ML for NP is evolving and new techniques will be developed that might not 

perform optimally on existing hardware. 

• Techniques to advance scientific discovery 
－ Sparse Identification of Nonlinear Dynamical Systems (SINDy) is an 

algorithm to discover governing dynamical equations 

• Techniques for explicit physics knowledge integration 
－ Applications of automatic differentiation through known physics equations 

into the ML models
－ Low energy nuclear physics examples has shown some improved results 

• Foundations Models for NP
－ A foundation model is any model that is trained on broad data (generally 

using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a 
wide range of downstream tasks.
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Uncertainty Quantification
• Understanding how to 

include UQ in deep ML 
models

• Include OOD 
uncertainties

• Auto-calibration
• Applications:

• Data driven ML-based 
surrogate models 

• Real time controller
• Anomaly detections

• Considerations for 
hardware constraints 

• Memory, Time, 
Performance trade-off
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Uncertainty quantification for accelerator anomaly detection at SNS ORNL

• Results from similarity model showed a ~4x improvement in performance over 
previously published results

• The ROC curve shows nearly the same level of performance (not optimized)
• We introduced an out-of-domain anomaly, labelled 1111 (red), the UQ-based 

model correctly identified the anomaly and indicated high uncertainty.
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Uncertainty quantification for data driven ML-based surrogate models in risk 
averse control research

QR model

• Quantile regression method have great performance in training distribution and are 
calibrated by definition, however, they do not perform as well for OOD estimation

• BNN model provides does a better job to estimate OOD but require calibration
• DGPA model provide the best OOD estimation and is calibrated by design
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Interpretability,  Explainability, and Robustness

• Applying and developing techniques to better 
understand model predictions and stability

• Gradient activation studies to understand what 
the model is focusing on

• Loss landscape analysis to better understand the 
model stability

Loss Landscape for FNAL system dynamic model
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Activation Study and Fault Classifications at SNS ORNL

• Applied GradCAM analysis on trained ML-based model for errant beam prediction
• Identifies sections of the waveform most relevant for a particular decision from the model
• The GradCAM vectors are reduced to 2-dimensional space using clustering algorithm 
• Clear clusters between normal and anomaly samples with some anomalies appearing in normal 

group 
• The anomaly sub-clusters may belong to different equipment failures
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Design & Control

• Advance applications for design 
& control

• Bayesian Optimization
• Risk Averse and UQ aware 

Reinforcement Learning
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Near real-time control and calibration for the GlueX CDC

Accelerate the calibration from month(s) to minute(s).
1. Gain Correction Factor: CDC Voltage Gain calibration
2. Time to Distance: track fitting calibration

Calibration is required to provide reliable PID for 
physics analysis
Considerations:

1. External environmental conditions (temperature, 
pressure)

2. Changing beam conditions (current)
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Stabilizing Gain in the Central Drift Chamber

Schematic of downstream view of CDC, with 
straws HV control status indicated.

• Peak heights from Gaussian Process side
of the CDC show dramatic reduction in 
pressure dependence compared to 
constant HV
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