---- Data Science Department ---- Research at Jefferson Lab

Dr. Malachi Schram

On behalf of the Data Science Department

This Photo by Unknown author is licensed under CC BY-ND

Data Science Pillars

• <u>Applications</u>:

- Nuclear Physics
- Advanced computing
- Health & Climate

• Focused Methods & Algorithms:

- Uncertainty Quantification
- Interpretability and Explainability
- Design & Control
- Infrastructure:
 - JLab ML & Data Hub
 - JLab Data Science software

Data Science Infrastructure

Data Science Methods & Algorithms

Figure 1: Foundational research themes of SciML must tackle the challenges of creating domainaware, interpretable, and robust ML formulations, methods, and algorithms.

SciML Capabilities	Data-intensive scientific inference & data analysis	ML methods for multimodal data in situ data analysis with ML ML to optimally guide data acquisition :
Machine Learning for Advanced Scientific Computing Research	ML-enhanced modeling & sim ML-hybrid algorithms and models for better scientific computing tools	ML-enabled adaptive algorithms ML parameter tuning ML-based multiscale surrogate models :
	Intelligent automation & decision support automated decision support, adaptivity, resilience, control	exploration of decision space with ML ML-based resource mgt & control optimal decisions for complex systems :

Figure 2: Opportunities for SciML impact arise in scientific inference and data analysis; in MLenhanced modeling and simulation; in intelligent automation and decision support; and in related applications.

Applications in Experimental Halls

- Developing a JLab ML Hub to capture the workflow and artifacts
- Incorporating uncertainty quantification in ML models
 - Hall A:
 - Particle ID w/ UQ for SoLID
 - -Hall B: Several discussions
 - -Hall C: Working with Tanja Horn and Cristiano Fanelli to define effort
 - -Hall D:
 - Gaussian Process method for AIEC controls
 - Develop some ML-based models for Particle ID for CPP
 - -Hall E:
 - Contribute to AI4EIC workshops
 - Working to define a long term plan with Cristiano Fanelli (new bridge position at W&M)

External Applications

- AI/ML for Spallation Neutron Source at ORNL:
 Anomaly detection and fault prognostication
- Data-Driven Decision Control for Complex Systems (DnC2s):
 - -Risk-averse reinforcement learning
 - Distance aware/preserving uncertainty quantification for ML-based regression
- Multi-objective RL for CEBAF
 - -Accelerator and data science collaboration
- Hampton Roads Digital Twin:
 - -Health and climate resiliency studies
- SciDAC project:
 - Theory, experiment, data science Integration

- Top R&D priorities:
 - 1. Incorporate prior knowledge into AI systems
 - 2. Training for rare events
 - 3. Explainability, interpretability and understanding
 - 4. <u>Automation</u> and optimization -- self-driving labs, hypothesis generation
 - 5. Targeted algorithm development -- development focused on DOE missions
 - 6. Sustainable AI -- energy-efficient solutions (green AI)
- Enablers:
 - Underlying ecosystem to enable AI R&D -- virtual AI user facility
 - Ethics framework to guide AI R&D identify unexpected biases

- Three topical AI for Science & Security workshops recently held to discuss a long-term vision:
 - 1. June Al Surrogates, Al for Complex Systems
 - 2. July Properties and Inverse Design, Foundation Models
 - 3. August Autonomous Discovery, AI for Programming
- Interesting themes:
 - -Reinforcement learning for complex controls
 - -ML-based surrogate models and digital twins
 - -<u>Uncertainty quantification (UQ)</u>, verification & validation (V&V), and guaranties
 - -Building in physical constraints and relationships into the ML models
 - Integrating ML-based function surrogates with <u>UQ</u> & guaranties into code and simulations
 - Combined data and AI models management
 - Trustworthiness, robustness, and explainability

- Scalable Distributed Learning
 - In order to efficiently train over from large dataset, the need for a distributed learning computing infrastructure will likely be required.
- Uncertainty quantification for deep learning models
 - Detailed study of uncertainty estimation techniques for AI/ML in NP applications as it relates to higher dimensionality and unique modalities.
 - Applications of UQ ML models on edge hardware (under constraint)
- Computing co-design for AI/ML and NP
 - AI/ML for NP is evolving and new techniques will be developed that might not perform optimally on existing hardware.
- Techniques to advance scientific discovery
 - Sparse Identification of Nonlinear Dynamical Systems (SINDy) is an algorithm to discover governing dynamical equations
- Techniques for explicit physics knowledge integration
 - Applications of automatic differentiation through known physics equations into the ML models
 - Low energy nuclear physics examples has shown some improved results
- Foundations Models for NP
 - A foundation model is any model that is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks.

Thank you

Extra

Uncertainty Quantification

- Understanding how to include UQ in deep ML models
 - Include OOD uncertainties
 - Auto-calibration
- Applications:
 - Data driven ML-based surrogate models
 - Real time controller
 - Anomaly detections
- Considerations for hardware constraints
 - Memory, Time, Performance trade-off

Jefferson Lab

Uncertainty quantification for accelerator anomaly detection at SNS ORNL

- Results from similarity model showed a ~4x improvement in performance over previously published results
- The ROC curve shows nearly the same level of performance (not optimized)
- We introduced an **out-of-domain anomaly**, labelled 1111 (red), the UQ-based model correctly identified the anomaly and indicated high uncertainty.

Uncertainty quantification for data driven ML-based surrogate models in risk averse control research

- Quantile regression method have great performance in training distribution and are calibrated by definition, however, they do not perform as well for OOD estimation
- BNN model provides does a better job to estimate OOD but require calibration
- DGPA model provide the best OOD estimation and is calibrated by design

Interpretability, Explainability, and Robustness

- Applying and developing techniques to better understand model predictions and stability
- Gradient activation studies to understand what the model is focusing on
- Loss landscape analysis to better understand the model stability

Loss Landscape for FNAL system dynamic model

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter nermalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

Activation Study and Fault Classifications at SNS ORNL

- Applied GradCAM analysis on trained ML-based model for errant beam prediction
- Identifies sections of the waveform most relevant for a particular decision from the model
- The GradCAM vectors are reduced to 2-dimensional space using clustering algorithm
- Clear clusters between normal and anomaly samples with some anomalies appearing in normal group
- The anomaly sub-clusters may belong to different equipment failures

Design & Control

- Advance applications for design & control
- Bayesian Optimization
- Risk Averse and UQ aware Reinforcement Learning

Near real-time control and calibration for the GlueX CDC

Accelerate the calibration from month(s) to minute(s).

- 1. Gain Correction Factor: CDC Voltage Gain calibration
- 2. Time to Distance: track fitting calibration Calibration is required to provide reliable PID for physics analysis
- Considerations:
 - 1. External environmental conditions (temperature, pressure)
 - 2. Changing beam conditions (current)

FPSC

Stabilizing Gain in the Central Drift Chamber

 Peak heights from Gaussian Process side of the CDC show dramatic reduction in pressure dependence compared to constant HV

54 Temp. Input Enabled Tuned HV: [2113-2140] V 52 HV=2130 V 50 ≥48 M 46 44 42 40 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 **Event Number** 1e8 102 Atm. Pressure (kPa) 66 66 98

