
Overview of SoLID

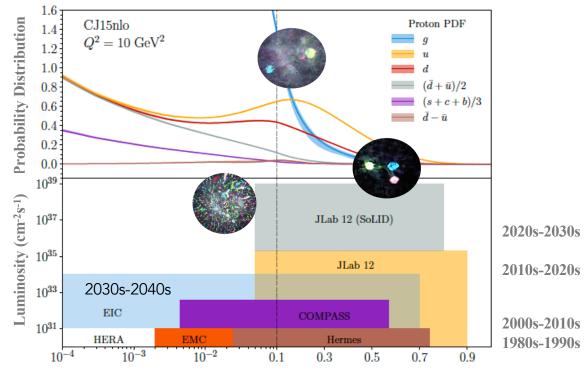
Intensity Frontier for Cold QCQ

JLUO meeting on NSAC long range plan, September 8, 2022

Acknowledgement: Thanks to Haiyan Gao, Zein-Eddine Meziani, Paul Souder, Xiaochao Zheng and many other SoLID collaborators.

Outline

- 1. Overview of SoLID
- 2. SoLID Physics Program:
 - i) **SIDIS:** Transversity and TMDs
 - ii) **Threshold J**/ ψ : Probe Strong Color Field and Proton Mass
 - iii) PVDIS: Precision Test of Standard Model
 - iv) Run-group Experiments: GPDs, TMDs and Spin
- 3. SoLID Device and Project
 - i) Detectors
 - ii) Cost and Schedule
 - iii) Collaboration


1. Overview of SoLID

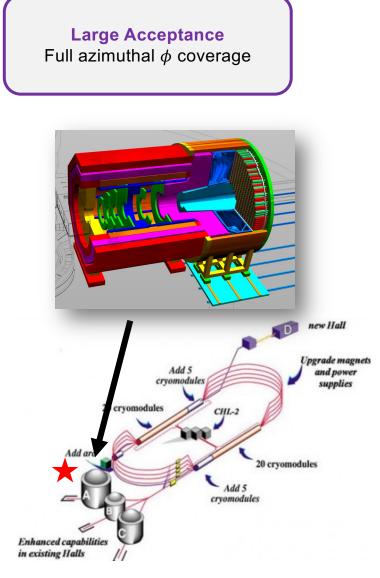
SoLID@JLab: at the QCD Intensity Frontier

- Nucleon spin, proton mass, beyond standard model experiments require precision measurements of small cross sections and asymmetries, combined with multiple particle detection
- critical need for high luminosity and large acceptance

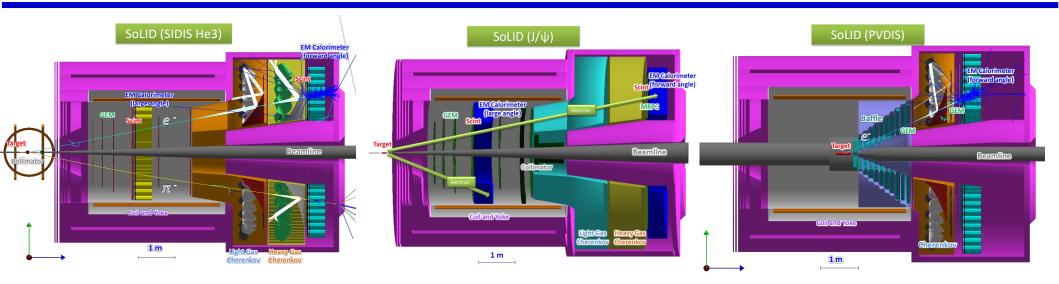
- SoLID extremely high intensity
 - 3D imaging of the nucleon
 - Beyond Standard Model searches
 - Exploration of gluonic-force

Fraction of nucleon momentum

SoLID@JLab: at the QCD Intensity Frontier


SoLID will maximize the science return of the 12-GeV CEBAF upgrade by combining

Research at **SoLID** will have the *unique* capability to explore the QCD landscape while complementing the research of other key facilities


- 3D momentum imaging of a relativistic strongly interacting confined system - TMDs (<u>nucleon spin</u>)
- Superior sensitivity to the differential electro- and photo-production cross section of J/ψ near threshold (gluon field and proton mass)
- Pushing the phase space in the search of new physics and of hadronic physics

Synergizing with the pillars of EIC science (proton spin and mass) through high-luminosity valence quark tomography and precision J/ψ production near threshold

Approved SoLID Experiments

 A) SIDIS: (3) Transversely Polarized ³He (n): Longitudinally Polarized ³He (n): Transversely Polarized Proton:

Transversity, Sivers, Pretzlosity TMDs Worm-gear TMDs Transversity/Sivers, Pretzlosicty TMDs

B) Threshold J/ψ: Rating A

Gluon Field, Proton Mass

C). PVDIS: Rating A

Test Standard Model

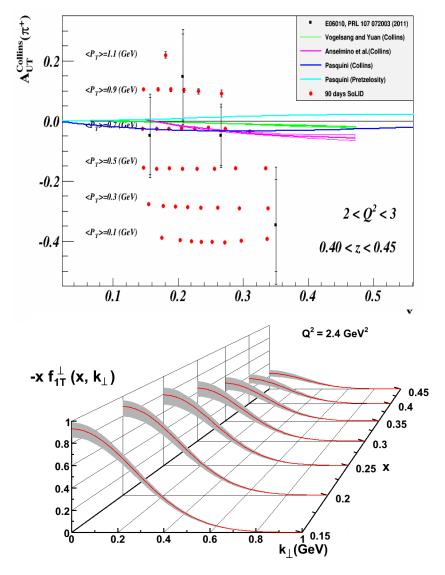
Run group experiments (6) approved for GPDs, TMDs, and spin

PAC50 (2022): Approved 2 New SoLID Experiments: Beam Normal SSA (A-) PVEMP (C2)

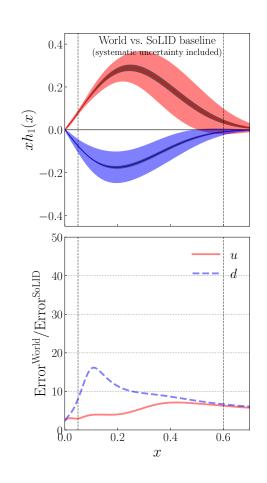
2. SoLID Physics Program

- i. **SIDIS:** Transversity and TMDs
- ii. Threshold J/ψ : Gluon Field and Proton Mass
- iii. PVDIS: Test of Standard Model
- iv. Run-groups: GPDs, TMDs, Spin

SoLID-SIDIS: Precision Mapping in Multi-Dimension

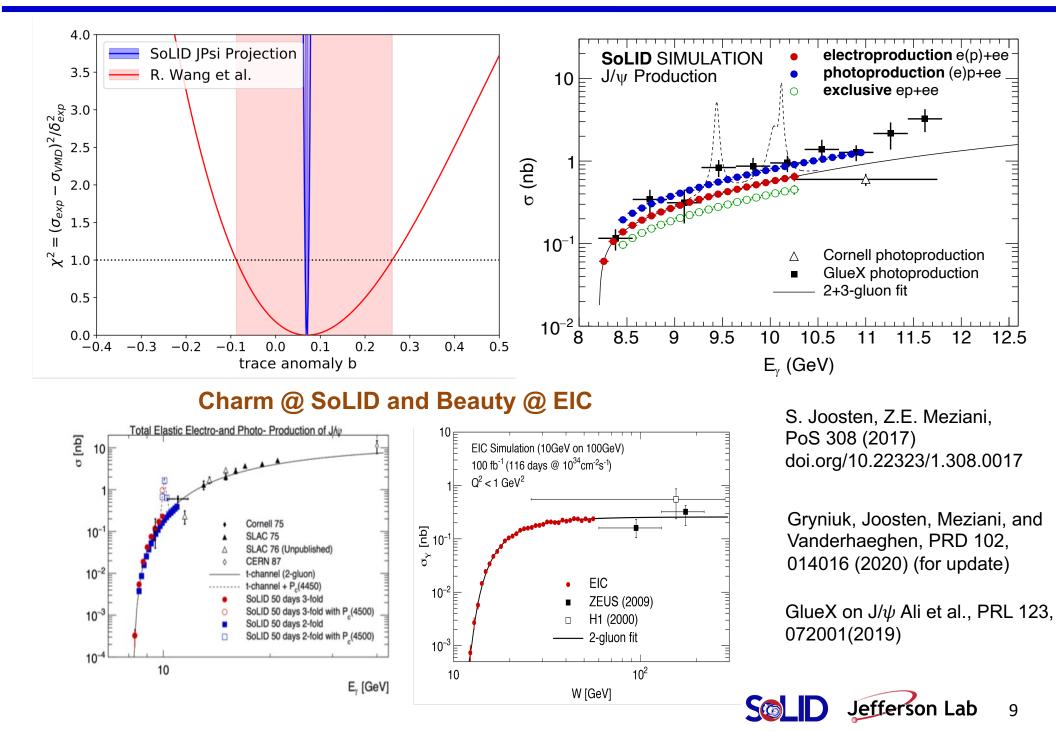

SoLID-SIDIS program: Large acceptance, Full azimuthal coverage + High luminosity

- 4-D mapping of asymmetries with precision
- Constrain models and forms of TMDs, Tensor charge, ...
- Lattice QCD, QCD dynamics

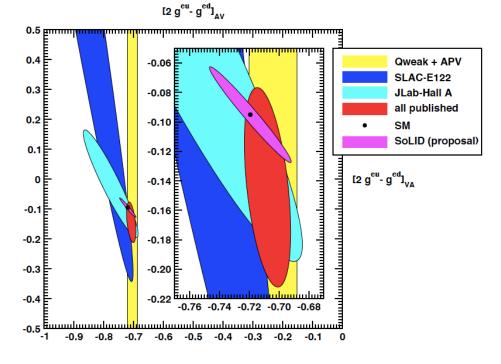


 More than 1400 bins in x, Q², P_T and z for 11/8.8 GeV beam.

- **Sivers:** Confined quark motion
- Quantum correlations between nucleon spin and quark motion
- QCD dynamics



Transversity

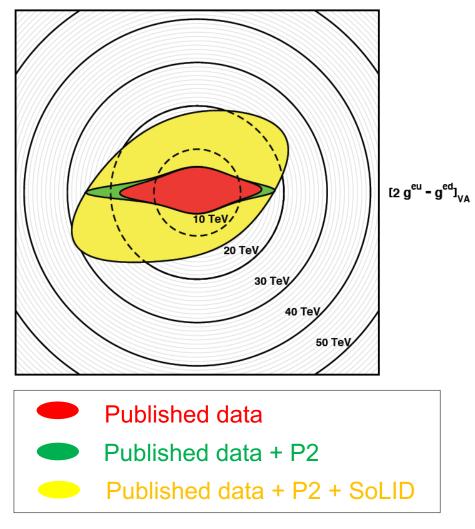


SoLID-J/ ψ (and EIC): Gluon Field and Proton Mass

SoLID-PVDIS: Precision Test of Standard Model

SoLID makes a unique contribution to the SMEFT program. Improvement in couplings

Unique sensitivity to


• lepto-phobic Z', dark boson Z_d

Also provides precision study of

- charge symmetry violation
- high-twist effects
- d/u at high-x

Improvement in energy reach for electron-nucleon couplings

 $[2 g^{eu} - g^{ed}]_{AV}$

Potential of SoLID in EIC Era (JLab20+, Positron, ...)

1) SIDIS: Single Spin Asymmetry: EIC and JLab12

the gluonic field (color dipole size) 0.50 < z < 0.600.60 < z < 0.70 0.30 < z < 0.40 0.2 GeV < P_T < 0.4 GeV 0.40 < z < 0.500 15 Solid SIMULATION (20 GeV) 2² (GeV²) $0.4 \text{ GeV} < P_{\tau} < 0.6 \text{ GeV}$ SoLID 8.8 GeV (He³ ψ ' Production **10**⊧ SoLID 11 GeV (He3) 0.15 0 EIC e-p is = 29 GeV 50 days at 10³⁷/cm²s SIDIS: Collins Asymmetry: 20 GeV and 12GeV Collins SSA SoLID ³He: • 24GeV -100 days • 12 GeV -69 days electroproduction photo production 10-0.30 < z < 0.35 0.35 < z < 0.40 0.40 < z < 0.50 0.50 < 7 < 0.60 1.0 GeV < Q² < 2.0 GeV E06-010 /6 GeV J/ψ 2+3 gluon ψ'_1 2+3 gluon 2.0 GeV < Q² < 4.0 GeV 10 16 14 12 10 8 21¢ -#24 Eγ $10 \text{ GeV} < 0^2 < 6.0 \text{ GeV}$ (GeV) SA Q² < 10.0 Ge SSA 3) Electron weak coupling C₃ with 5 Ma + 2 e+ and e-0.0 GeV < Q² < 20.0 GeV SSA

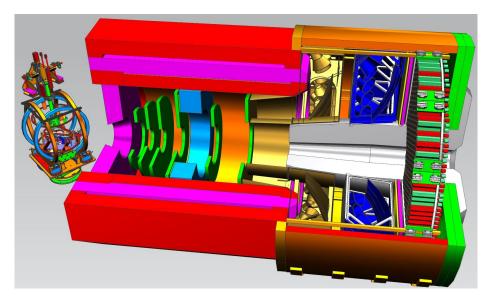
> Jefferson Lab 11

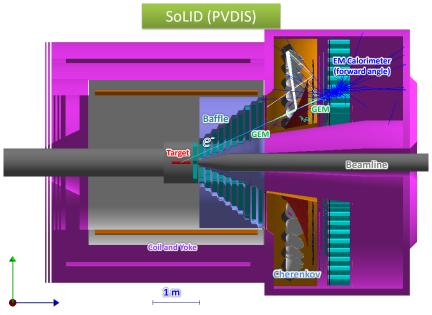
18

2) ψ ': Complementary probe of

7. SoLID Device and Project

Detectors, Cost and Schedule, Collaboration

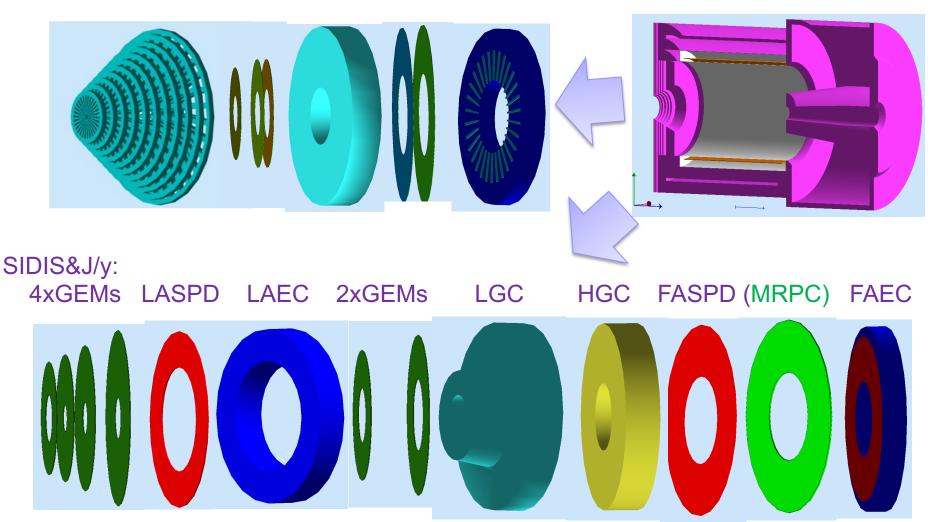



SoLID Apparatus

Requirements are Challenging

- High Luminosity (10³⁷-10³⁹)
- High data rate
- High background
- Low systematics
- High Radiation
- Large scale
- Modern Technologies
 - GEM's
 - Shashlik ECal
 - Pipeline DAQ
 - Rapidly Advancing Computational Capabilities
- High Performance Cherenkovs
- Baffles

Polarized ³He (``neutron") @ SoLID


SoLID Detector Subsystems

PVDIS:

Baffle

3xGEMS LGC 2xGEMs EC

Uses full capability of JLab electronics

Pre-R&D items: LGC, HGC, GEM's, DAQ/Electronics, Magnet

SoLID Cost Estimation

WBS	Subsystem	Cost –M\$ (with overhead)	
1.01	PM	1.5	
1.02	EM	10.1	Each L2 WBS includes
1.03	LGC	5.6	design and construction
1.04	HGC	6.0	
1.05	GEM	5.8	
1.06	DAQ	6.2	
1.07	Software	0.7	
1.08	Magnet	7.8	
1.09	Infrastructure	9.6	
1.10	OPC		

Cost before contingency and escalation:53.3 M\$With contingency72.2 M\$With escalation82.4 M\$ (Total Equipment Cost)

(Additional escalation for 2022 estimation)

SoLID Project Schedule Estimations

Assumptions:

DOE Science Review (2021)

1.5 Years pre-R&D (in progress)

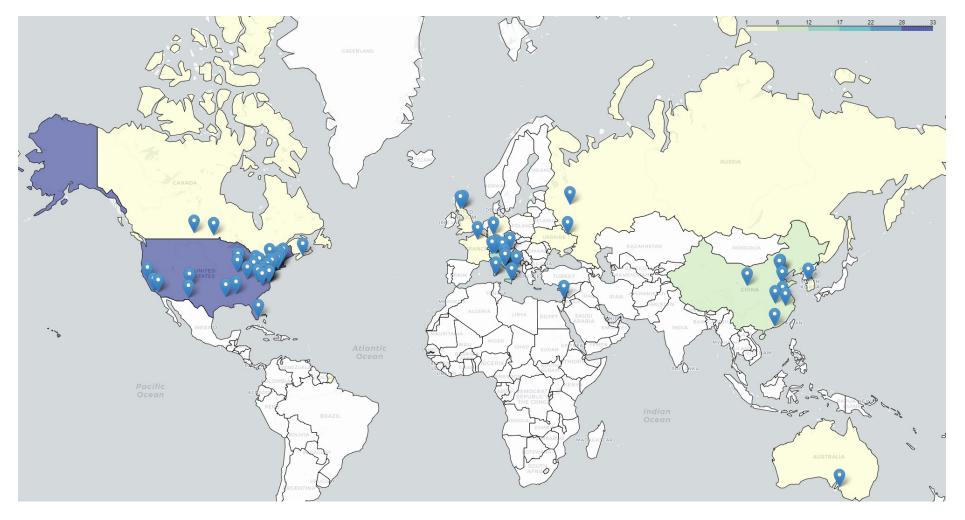
Project starts in FY2022, 2 Years Project Engineering and Design (PED) (FY22-FY23), Construction long-lead items start in FY23

Main construction starts in FY24, 3+ Years **construction, complete by end of 2026.**

1 Year Installation 2027

Testing/commissioning: start with magnet/testing, then ECal/GEM with DAQ for testing, Then HGC/LGC

Schedule contingency ~ 1 year


Start Physics in 2029

With CD0 delayed, above schedule is expected to be late by ~1 year

Strong Collaboration

- 270+ collaborators, 70+ institutions from 13 countries
- Large international participations and anticipate contributions
- Strong theory support

full list available at https://solid.jlab.org/collaboration/full.html

Summary

 SoLID: A large acceptance device which can handle very high luminosity to allow full exploitation of JLab 12 GeV potential

 \rightarrow pushing the limit of the intensity frontier for Cold QCD

 SoLID has a rich and vibrant science program complementary and synergistic to the proposed EIC science program

Three pillars on SIDIS, PVDIS and J/Psi production + more

- After a decade of hard work, we have a mature pre-conceptual design with expected performance to meet the challenging requirements for the approved experiments
- Completed the DOE science review (2021)
- 270+ collaborators, 70+ institutions from 13 countries

https://solid.jlab.org/

