Fundamental Symmetries with Nucleons and Nuclei

Emanuele Mereghetti

September 6th, 2022 Computational Nuclear Physics and AI/ML Workshop

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Introduction

The Standard Model of Particle Physics

- 1. describes nature in a economic and elegant way (spontaneously broken) local gauge symmetry
- 2. validated over a wide variety of scales

Introduction

• neutrino masses

baryogenesis

dark matter

where can we look for BSM physics?

Finding new physics: the energy frontier

- 1. collide protons at high energy, and see what comes out
- create new particles **and/or** study their effects on rare processes

Finding new physics: the energy frontier

ATLAS, Standard Model Public Results

- 1. collide protons at high energy, and see what comes out
- create new particles and/or study their effects on rare processes

Finding new physics: the precision frontier

Majorana demonstrator

- 2. search for tiny indirect effects, with no (very precisely known) SM background
- electric dipole moments
- kaon physics
- rare *B* decays, $b \rightarrow s\gamma$

- muon and electron g 2
- neutrinoless double β decay
- lepton flavor violation $\mu \to e\gamma$

1. observables w. SM background

need precise SM background to claim discovery

1. observables w. SM background

need precise SM background to claim discovery

2. observables w/o (w. negligible) SM background

precision to extract fundamental symmetry violation params $(\theta, m_{\beta\beta}, ...)$ & to connect with probes in other frontiers

hadronic and nuclear theory crucial to this effort

The impact of hadronic and nuclear uncertainties: Neutrinoless double beta decay

• in minimal scenario of light Majorana exchange

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G_{01} \frac{m_{\beta\beta}^2}{m_e^2} g_A^2 \left(M_{\text{long}}^{0\nu} + g_\nu^{\text{NN}} M_{\text{short}}^{0\nu}\right)^2, \qquad m_{\beta\beta} = \left|\sum_i U_{ei}^2 m_i\right|$$

 g_A, g_{ν}^{NN} : 1- and 2-nucleon params, $M_{\text{long}}^{0\nu}, M_{\text{short}}^{0\nu}$: nuclear matrix elements

The impact of hadronic and nuclear uncertainties: Neutrinoless double beta decay

• in minimal scenario of light Majorana exchange

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G_{01} \frac{m_{\beta\beta}^2}{m_e^2} g_A^2 \left(M_{\text{long}}^{0\nu} + g_\nu^{\text{NN}} M_{\text{short}}^{0\nu}\right)^2, \qquad m_{\beta\beta} = \left|\sum_i U_{ei}^2 m_i\right|$$

 g_A, g_ν^{NN} : 1- and 2-nucleon params, $M_{long}^{0\nu}, M_{short}^{0\nu}$: nuclear matrix elements • impact of next gen. of experiments on neutrino physics affected by uncertainties

7/42

Chiral EFT

Exploit QCD symmetries & scale separation in hadronic/nuclear physics

$$Q \sim m_{\pi} \ll \Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}$$

- expand NN potential and external currents in Q/Λ_{χ}
- LECs are fit to data in 2- and 3-nucleon systems
- reproduce well light-nuclear systems
- small expansion parameter allow for uncertainty estimation

External currents in chiral EFT

• derive external currents consistent w. nuclear potential

e.g. vector, axial, scalar, pseudoscalar, tensor

framework can be applied to symmetry-breaking potentials

e.g. neutrino potential in $0\nu\beta\beta$, P- and T-violating potentials

Outline

1 One-body currents

2 Two-current insertions

3 Electric dipole moments

4 Two-body operators

One-body currents

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

BSM processes dominated by 1-body currents

$$\mathcal{L}^{\text{BSM}} = \bar{q}\Gamma\tau^a q \mathcal{X}_a + \bar{q}\Gamma q \mathcal{X}_0 + \bar{s}\Gamma s \mathcal{X}_s, \qquad q = (u, d)^T, \qquad \Gamma = \{1, \gamma_5, \gamma^\mu, \gamma^\mu \gamma_5, \sigma^{\mu\nu}\}$$

- coherent neutrino-nucleus scattering (CEvNS)
- $\mu \rightarrow e$ conversion in nuclei
- dark-matter nucleus scattering
- neutron EDM from qEDM, molecular electric dipole moments

 $egin{aligned} \mathcal{X}_+ &= ar{e}\,\Gamma
u \ \mathcal{X}_{u,d,s} &= ar{
u}\gamma_\mu
u \ \mathcal{X}_{u,d,s} &= ar{e}\Gamma\mu \ \mathcal{X}_{u,d,s} &= ar{\chi}\Gamma\chi \end{aligned}$

$$\mathcal{X}_{u,d,s} = \bar{e}\gamma_5 e, \,\tilde{F}_{\mu\nu}$$

1-body currents

· chiral EFT construction of the currents at very high order

S. Pastore *et al.*, '09; Kölling *et al.* '09, '16; A. Baroni *et al.*, '16; H. Krebs *et al.*, '17, '20; M. Hoferichter *et al.*, '15

- most important input from single nucleon charges
- 1. isovector charges very well determined on the lattice

$$g_A^{\rm QCD} = 1.264 \pm 0.009$$

A. Walker-Loud et al (CalLat collaboration) '19

limited by QED and isospin breaking

1-body currents

				to a contract of the second					8 _#	
Collaboration	Ref.	N_f	Publicau.	Continuum	chinal en	futie volu	tenone,	ercited at	g_A^{u-d}	
CalLat 19	[148]	2+1+1	С	0	*	*	*	0	1.2642(93)	
ETM 19	[149]	2+1+1	Α			*	*		1.286(23)	
PNDME 18 ^a	[50]	2+1+1	Α	*	*	*	*		1.218(25)(30)	
CalLat 18	[51]	2+1+1	Α		*	*	*		1.271(10)(7)	
CalLat 17	[47]	2+1+1	Р	0	*	*	*	0	1.278(21)(26)	
PNDME 16 ^a	[46]	2 + 1 + 1	А	o ‡	*	*	*	•	1.195(33)(20)	
NME 21 ^a	[150]	2+1	Р	0‡	*	*	*	0	1.31(6)(5)	
LHPC 19	[13]	2+1	Α	• *	*	*	*	0	1.265(49)	
Mainz 19	[84]	2+1	Α	*	0	*	*	0	$1.242(25)(^{+0}_{-0.030})$	
PACS 18A	[11]	2+1	Α		*	*	*		1.273(24)(5)(9)	
PACS 18	[9]	2+1	Α			*	*		1.163(75)(14)	
$\chi QCD 18$	[26]	2+1	Α		*	*	*		1.254(16)(30) ^{\$}	
JLQCD 18	[60]	2+1	Α				*		1.123(28)(29)(90)	
LHPC 12A ^b	[151]	2+1	Α	• *	*	*	*	0	0.97(8)	
LHPC 10	[68]	2+1	Α				+		1.21(17)	
RBC/UKQCD 09B	[53]	2+1	Α				*		1.19(6)(4)	
RBC/UKQCD 08B	[52]	2+1	Α				*		1.20(6)(4)	
LHPC 05	[152]	$^{2+1}$	Α	۰.	۰.	*	*	۰.	1.226(84)	
Mainz 17	[36]	2	Α	*	*	*	*		1.278(68)(⁺⁰ _{-0.087})	
ETM 17B	[40]	2	Α				*		1.212(33)(22)	
ETM 15D	[38]	2	А		0	0	*	0	1.242(57)	
RQCD 14	[34]	2	А	0	*	*	*		1.280(44)(46)	
QCDSF 13	[32]	2	Α		*		*		1.29(5)(3)	
Mainz 12	[33]	2	А	*			*		$1.233(63)(^{+0.035}_{-0.060})$	
RBC 08	[153]	2	А				*		1.23(12)	
QCDSF 06	[30]	2	Α	0			*		1.31(9)(7)	

before '15 Long Range Plan

<□▶<□▶<□▶<<=>><=><=><=><=><=><=><=><=><=><</p>
13/42

Isoscalar and strange matrix elements

- needed for neutral current processes ($\mu \rightarrow e$, CE ν NS, ...) if BSM has generic couplings to quark flavors
- 2. sensitivity to disconnected diagrams increases uncertainties in u, d
- 3. s matrix elements not (yet) satisfactory

$$g_A^s \in [-0.061, -0.026], \qquad g_T^s = -0.0027(16)$$

Isoscalar and strange matrix elements

- needed for neutral current processes ($\mu \rightarrow e, CE\nu NS, ...$) if BSM has generic couplings to quark flavors
- 2. sensitivity to disconnected diagrams increases uncertainties in u, d
- 3. s matrix elements not (yet) satisfactory

$$g_A^s \in [-0.061, -0.026], \qquad g_T^s = -0.0027(16)$$

The nucleon σ term

R. Gupta, et al, '21

- matrix element of the scalar charge, important for Higgs-mediated BSM
- long-standing discrepancy between LQCD and extractions from πN scattering
- very sensitive to low-lying excited state ($N\pi$ and $N\pi\pi$)
- $\sigma_{\pi N}$ compatible with πN scattering with narrow priors around $N\pi$

need better ESC control at small m_{π} !

The nucleon σ term

R. Gupta, et al, '21

- matrix element of the scalar charge, important for Higgs-mediated BSM
- long-standing discrepancy between LQCD and extractions from πN scattering
- very sensitive to low-lying excited state ($N\pi$ and $N\pi\pi$)
- $\sigma_{\pi N}$ compatible with πN scattering with narrow priors around $N\pi$

need better ESC control at small m_{π} !

- new strategies for signal-to-noise problem?
 M. Wagman and M. Savage, '17; W. Detmold, G. Kanwar, H. Lamm, M. Wagman, N. Warrington, '21;
- variational methods?

Nuclear matrix elements

B. S. Hu, J. Padua-Arguelles, S. Leutheusser, T. Miyagi, S. R. Stroberg, J. D. Holt, '21

- several new shell-model calculations for DM, CEνNS and μ → e
 M. Hoferichter, J. Menéndez, A. Schwenk, '20; W. C. Haxton, E. Rule, M. J. Ramsey-Musolf, '22; M. Hoferichter, J. Menéndez, F. Noël, '22
- first ab initio calculation in good agreement with shell-model

Two-current insertions

< □ > < 部 > < 言 > < 言 > 三 の Q (~ 17/42

CKM unitarity and the Cabibbo anomaly

• improved radiative corrections to $0^+ \rightarrow 0^+$ Fermi decays

C. Y. Seng, M. Gorchtein, H. Patel, M. Ramsey-Musolf, '18; A. Czarnecki, W. Marciano, A. Sirlin, '19; J. C. Hardy and I. S. Towner, '20

• high-precision lattice QCD calculations of f_K/f_{π} and $f_+(0)$

$$\Delta = 1 - |V_{ud}|^2 - |V_{us}|^2 - |V_{ub}|^2 = (1.5 \pm 0.7) \cdot 10^{-3}$$

 2σ deviation!

theory driven, needs to be validated

Radiative corrections to nucleon decay

$$|V_{ud}|_{\text{neutron}}^2 = \frac{5024.7 \,\text{s}}{\tau_n (1 + 3g_A^2)(1 + \delta_R(E_0) + \Delta_R^V)}, \qquad \Delta_R^V = \frac{\alpha}{2\pi} \left(4 \ln \frac{m_Z}{m_p} + \Delta_{\text{np}} \right)$$

- $\delta_R(E_0)$ (universal soft photon emission) and ptb. log dominate EM corrections
- Δ_{np} is nonperturbative and small, but dominates the error
- for Fermi decays, Δ_{np} proportional to the $W \gamma$ box

Radiative corrections to nucleon decay

- $\delta_R(E_0)$ (universal soft photon emission) and ptb. log dominate EM corrections
- Δ_{np} is nonperturbative and small, but dominates the error
- for Fermi decays, Δ_{np} proportional to the $W \gamma$ box
- new dispersive analysis

$$\Delta_R^V = 0.02361(38) \to 0.02467(22)$$

C. Y. Seng, M. Gorchtein, M. Ramsey-Musolf, '18; + H. Patel, '18.

can be validated with LQCD?

Radiative corrections to g_A

• chiral EFT analysis pointed out overlooked pion-mediated EM corrections

4 ロ ト () 、 () ,

Radiative corrections to g_A

- chiral EFT analysis pointed out overlooked pion-mediated EM corrections
- sizable, % level correction to g_A

$$\frac{\alpha}{2\pi} \left(\Delta_{\rm em}^{(0)} + \Delta_{\rm em}^{(1)} \right) = 1.9\% + \frac{\alpha}{2\pi} \hat{C}_A$$

• improved LQCD-data agreement, but need \hat{C}_A ! \implies 2- and 3-current insertions

$\mathit{W}-\gamma$ box in Lattice QCD

thanks to B. Yoon and J. Yoo

- first calculations for $\pi^0 \to \pi^- e\nu \& K \to \pi \ell \nu$
- extra current insertion in C, D significantly raises the cost
- good agreement between LQCD & dispersive approach

$W - \gamma$ box in Lattice QCD

thanks to B. Yoon and J. Yoo

X. Feng, et al, '20; C. Y. Seng, et al, '20

- first calculations for $\pi^0 \to \pi^- e\nu \& K \to \pi \ell \nu$
- extra current insertion in C, D significantly raises the cost
- good agreement between LQCD & dispersive approach

$W - \gamma$ box in Lattice QCD

thanks to B. Yoon and J. Yoo

X. Feng, et al, '20; C. Y. Seng, et al, '20

- first calculations for $\pi^0 \to \pi^- e\nu \& K \to \pi \ell \nu$
- extra current insertion in C, D significantly raises the cost
- good agreement between LQCD & dispersive approach
- first calculations for neutron decay are coming:
- 1. signal to noise?
- 2. excited state contamination?
- 3. beyond $W \gamma$ box for GT ME?

Towards an EFT for radiative corrections

$$|V_{ud}|^2_{0^+ \to 0^+} = \frac{\log 2}{ft} \frac{\pi^3}{G_F^2 m_e^5} \frac{1}{1 + \Delta_R^V + \delta_R' + \delta_C + \delta_{NS}}$$

- nuclear corrections δ_{NS} and δ_C are mostly computed with nuclear models
- difficult to quantify uncertainties, can we use EFTs and *ab initio* methods?
- 1. construct EFT representation for δ_{NS}
- 2. test the formalism in simple systems, e.g. *pp* fusion, ³H decay
- 3. use in lightest $0^+ \to 0^+~(^{10}C \to {}^{10}B$ and ${}^{14}O \to {}^{14}N)$ with almost exact methods
- 4. extend to 23 transitions used by Towner and Hardy

イロト イポト イヨト イヨト 二日

Electric dipole moments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Electric dipole moments

A permanent Electric Dipole Moment (EDM)

- signal of *T* and *P* violation (*CP*)
- insensitive to CP violation in the SM
- BSM CP violation needed for baryogenesis

neutron

current bound $|d_n| < 1.8 \cdot 10^{-13} e \text{ fm}$ nEDM Collaboration, '20

SM $d_n \sim 10^{-19} e \text{ fm}$ M. Pospelov and A. Ritz, '05

large window & strong motivations for new physics!

Electric dipole moments

• large worldwide experimental program

 orders of magnitude improvements in next generation of experiments nEDM@SNS, RaEDM at ANL/FRIB, LANL nEDM,

Low-energy EFT for flavor-diagonal CPV

- one dim-4 operator: QCD $\bar{\theta}$ term
- 9 (+ 10 w. strangeness) hadronic operators @ $\mathcal{O}(v^2/\Lambda^2)$:

• 3 lepton EDM + 3 semileptonic operators (hadronization well understood)

1. nucleon EDM?

$$\langle N|J_V^\mu(x)\int d^4y\,\mathcal{O}_\mathcal{T}(y)|N\rangle$$

2. nucleon-nucleon TV potential?

 $\langle NN | \mathcal{O}_{\mathcal{I}} | NN
angle$

Nucleon EDM matrix elements

- nucleon EDM from qEDM prop. to g_T
- large (uncontrolled) errors on purely hadronic operators

Lattice QCD calculations of EDMs

J. Dragos, T. Luu, A. Shindler, et al '19

T. Bhattacharya, et al, '21

- EDM from QCD $\bar{\theta}$ term extremely challenging small matrix element, vanishing signal as $m_{\pi} \to 0$, large excited state contamination
- published results compatible with zero, approaching $d_n \sim 10^{-3} \bar{\theta} e \,\text{fm}$ "chiral log" prediction Crewther, Di Vecchia, Veneziano and Witten, '79

EDM from the QCD $\bar{\theta}$ term

- even for $\bar{\theta} = 0.2$, signal is small $\ll \operatorname{Re}(R^4(\tau, t, \mathbf{q})) = \mathcal{O}(1)$
- EFT calculations predict O(1) corrections from $N(\mathbf{k})\pi(-\mathbf{k})$ and $N(\mathbf{0})\pi(-\mathbf{k})\pi(\mathbf{k})$ states
- χ^2 not enough to discriminate, leading to large error on extrapolated nEDM

 $5 \times$ more statistics coming soon

∃ →

28/42

EDMs from dimension-6 operators

- preliminary results for qCEDM and gCEDM
- complicated by power divergences on the lattice
- error still a factor of 5 larger than QCD sum rule estimate
- ideas for LQCD calculations of TV (and PV) π-N couplings
 J. de Vries, EM, C. Y. Seng, A. Walker-Loud, '16; X. Feng, F. K. Guo and C. Y. Seng, '17

Observables dominated by two-body operators

Neutrinoless double beta decay

• $0\nu\beta\beta$ violates lepton number L by two units

possible iff ν s have a Majorana mass

 $\Xi \rightarrow$

- relation between m_{ν} and $0\nu\beta\beta$ depends on:
 - 1. assumptions on BSM physics
 - 2. nuclear matrix elements, e.g. $\langle {}^{76}\text{Ge}|V_{0\nu\beta\beta}|{}^{76}\text{Se} \rangle$

Consistent construction of the neutrino potential

- long range ν -exchange, mediated by V, A 1-nucleon weak current
- Coulomb-like neutrino potential

$$V_{\nu} = G_F^2 m_{\beta\beta} \tau^{(1)+} \tau^{(2)+} \frac{1}{\mathbf{q}^2} \left\{ \mathbf{1}^{(a)} \times \mathbf{1}^{(b)} - \frac{2}{3} g_A^2 \boldsymbol{\sigma}^{(a)} \cdot \boldsymbol{\sigma}^{(b)} + \ldots \right\}.$$

F. Šimkovic et al, '99

V. Cirigliano, et al, '18

- long range ν -exchange, mediated by V, A 1-nucleon weak current
- Coulomb-like neutrino potential

$$V_{\nu} = G_F^2 m_{\beta\beta} \tau^{(1)+} \tau^{(2)+} \frac{1}{\mathbf{q}^2} \left\{ \mathbf{1}^{(a)} \times \mathbf{1}^{(b)} - \frac{2}{3} g_A^2 \boldsymbol{\sigma}^{(a)} \cdot \boldsymbol{\sigma}^{(b)} + \ldots \right\}.$$

F. Šimkovic et al, '99

• NMEs from V_{ν} diverge logarithmically with the cut-off in nuclear interaction

need to modify LO neutrino potential!

Evaluation of $g_{\nu}^{\rm NN}$

W. Detmold and D. Murphy, '20

- we know the RG evolution, not finite part of $g_{\nu}^{\rm NN}$
- LQCD offers the most direct avenue
- long distance contributions to $\pi 0\nu\beta\beta$ already computed

$$\begin{aligned} |g_{\nu}^{\pi\pi}(\mu)|_{\mu=m_{\rho}} &= -10.89 \pm 0.79 & \text{X.-Y. Tuo, X. Feng and L.-C. Jin, '19} \\ |g_{\nu}^{\pi\pi}(\mu)|_{\mu=m_{\rho}} &= -10.78 \pm 0.52 & \text{W. Detmold and D. Murphy, '20} \end{aligned}$$

Evaluation of $g_{\nu}^{\rm NN}$

Z. Davoudi and S. Kadam, '20, '21

A. Grebe, W. Detmold, Z. Fu, D. Murphy, P. Oare, in progress

need two nucleon matrix element!

$$\mathcal{A}_{\nu}(nn \rightarrow ppe^{-}e^{-})$$

- formalism to match LQCD (euclidean, FV) to pionless EFT developed (at LO)
- preliminary calculations at heavy quark mass underway

A. Grebe, W. Detmold, Z. Fu, D. Murphy, P. Oare in progress

accuracy requirements on LQCD two-nucleon MEs not too steep

Z. Davoudi, S. Kadam, '21

イロン イボン イヨン イヨン

34/42

Evaluation of $g_{\nu}^{\rm NN}$

Z. Davoudi and S. Kadam, '20, '21

need two nucleon matrix element!

$$\mathcal{A}_{\nu}(nn \rightarrow ppe^{-}e^{-})$$

- formalism to match LQCD (euclidean, FV) to pionless EFT developed (at LO)
- preliminary calculations at heavy quark mass underway

A. Grebe, W. Detmold, Z. Fu, D. Murphy, P. Oare in progress

accuracy requirements on LQCD two-nucleon MEs not too steep

Z. Davoudi, S. Kadam, '21

イロン 不良 とくほど 不良 とう

3

"Cottingham" method

V. Cirigliano, W. Dekens, J. de Vries, M. Hoferichter, EM, '20, '21

• model the "forward Compton" scattering amplitude $W^+nn \rightarrow W^-pp$ at small $|\mathbf{k}|$, and large $|\mathbf{k}|$

$$\tilde{g}_{\nu}^{\rm NN}(\mu=m_{\pi})=1.32(50)_{
m inel}(20)_{
m r}(5)_{
m par}=1.3(6)$$

• translate in scheme-independent amplitude and provide "synthetic datum" can be fit to any potential and used in *ab initio* calculations

Impact on $0\nu\beta\beta$ nuclear matrix elements

short-range potential induces 40% - 50% shift

determination of g_{ν}^{NN} matters!

36/42

Nuclear matrix elements

• tremendous advance of ab initio methods

- IM-GCM, VS-IMSRG maybe more?
- Status
 - short-range contact

 - convergence w.r.t. basis size (✓)
 - correlations with other observables (

 (
 - convergence of many-body expansion
 - parameter sensitivity analysis
 - uncertainty guantification
 - · currents, other mechanisms easy (can reuse computed wave functions)
- Needs / Opportunities
 - accelerate calculations
 - emulators for sensitivity analysis & UQ
- Disclaimer: Status snapshot, changes with parameter analysis & UQ

MSU, UNC-Chapel Hill, U Notre Dame, Sun Yat-Sen University, TRIUMF, CEA Saclay, UA Madrid

thanks to H. Hergert

BSM mechanisms

A. Nicholson et al., CalLat coll., '18

W. Detmold et al., '22

- BSM mechanisms captured by dim-7 and dim-9 operators
- many-body input substantially the same
- but need several more meson, 1-nucleon and 2-nucleon matrix elements

 $\langle \pi^- | \bar{u} \Gamma d \, \bar{u} \Gamma d | \pi^+ \rangle$

- lots of unjustified assumptions in the literature . . .
- and lots of progress on the lattice

Schiff moments of diamagnetic atoms

Nucl.	Best value			Range				
	a_0	a_1	a_2	a_0	a_1	a_2		
¹⁹⁹ Hg	0.01	± 0.02	0.02	0.005 - 0.05	-0.03 - +0.09	0.01 - 0.06		
129 Xe	-0.008	-0.006	-0.009	-0.0050.05	-0.0030.05	-0.0050.1		
²²⁵ Ra	-1.5	6.0	-4.0	-16	4 - 24	-315		

from M. Ramsey-Musolf, J. Engel, U. van Kolck, '13

• EDM depends on screening factor A and the Schiff moment

$$S = -\frac{m_N g_A}{F_\pi} \left(a_0 \frac{\overline{g}_0}{F_\pi} + a_1 \frac{\overline{g}_1}{F_\pi} + a_2 \frac{\overline{g}_2}{F_\pi} \right) e \operatorname{fm}^3 + \left(\alpha_n d_n + \alpha_p d_p \right) \operatorname{fm}^2$$

- π -N contribs. affected by large theory uncertainties
- complicate interpretation of ¹⁹⁹Hg and ¹²⁹Xe bounds

Schiff moments of diamagnetic atoms

J. Dobaczewski, J. Engel, M. Kortelainen, P. Becker, '18

• error in ²²⁵Ra reduced by correlations w. nuclear properties e.g. ²²⁴Ra octupole moment

$$a_1 \in [4, 24] \Longrightarrow [1, 5]$$

- 1. can *ab initio* methods be applied?
- 2. can TV NN scattering amplitude be computed on the lattice?

Conclusion

Interpretation of next generation of Fundamental Symmetry experiments

- smooth connection between quark and hadron level pictures
- non-perturbative evalution of meson, 1-, 2-, ..., n-nucleon matrix elements
- progress in many-body calculations
- deeper understanding of nuclear EFTs (convergence, renormalization)