

Hall A DVCS Collaboration Meeting - Friday 20 December 2013

Jefferson Lab Thomas Jefferson National Accelerator Facility

E08-025 Deuterium results

Camille Desnault – Ph-D Student

To get Deuterium results ... (my work so far)

Calorimeter calibration :

\rightarrow results using the π° method → comparison with Malek's results

Run quality :

(= discarding some runs)

Deuterium analysis :

→ Contamination subtraction \rightarrow LD2 – LH2 targets subtraction

 \rightarrow HRS and Calorimeter problems during the data taking

 \rightarrow Including the fermi motion for the LH2 target's proton \rightarrow Comparison with Malek's results (in applying the same cuts)

Calorimeter calibration using the π° method

Elastic calibration (ep \rightarrow e'p'):

 \rightarrow 3 Elastics calibrations (October 26th, November 17th, December 14th) \rightarrow The **polarity of HRS is reversed** to detect the proton, the Elastic calibration <u>is not possible</u> during the data taking (= dedicated runs)

Minimization of χ^2 :

Theoretical energy

π° calibration (ep $\rightarrow e'p'\pi^{\circ} \rightarrow e'p'\gamma\gamma$):

Calibration coefficients

$\rightarrow \pi^{\circ}$ Calibration is possible during the data taking (= same experimental setup as the DVCS runs) $\rightarrow \pi^{\circ}$ Calibration allows to calibrate the calorimeter for each day of the experiment (= Monitoring)

Theoretical energy calculation from :

→ Electron energy $\rightarrow \pi^{\circ}$ position → Assuming exclusive event (Mx2 cut)

We perform several iterations of calibration to stabilize the results

Calorimeter calibration using the π° method

Blue dots : **Before calibration** Red dots : After calibration

- -_ _ _ _ dotted lines : **Elastic calibrations**

Calorimeter calibration (Comparison with Malek's results)

Run quality (= discarding the problematic runs)

Acquisition system problem (Dead Time problem for one run)

HRS problem (Low number of hits in one of the PMT of the Cerenkov detector for one run)

<u>Conclusion</u> : 10% from the totality of the runs affected

Contamination subtraction : accidentals 1 cluster contribution

\rightarrow Photons **not related to the trigger electron** detected in the [-3, 3] ns clustering window (= not coming from the vertex) → Uniform contribution in the time on the 128 ns of the acquisition window

<u>To remove the accidentals contribution, we shift in time the clustering window :</u> from [-3, 3] ns to [-11, 5] ns (and [5, 11] ns) Kin2_High_LD2

Accidentals are :

Contamination subtraction : π° contamination

Raw data

1-cluster events $(DVCS + \pi^{\circ})$

1-cluster events $(DVCS + \pi^{\circ})$

Example of π° contamination subtraction

Kin2_High_LD2

In the Blue curve : we have the real π° but also accidentals π°

We have to remove the accidentals π° contribution to the real π° to subtract only the real π° from the raw data

10

with the trigger electron trigger electron

Arrival time of first 10 cluster (in ns) 3 ns -3 ns -5 ns -8 Camsonne A.

<u>Accidentals π° (3 types)</u> :

 \rightarrow A) 2 photons **related** to a π° , so the both in coincidence with themselves but not in coincidence \rightarrow B) 2 photons **not related** to a π° , with one of them in coincidence with the trigger electron \rightarrow C) 2 photons **not related** to a π° , and none of them in coincidence with themselves or with the

> A) [-11, -5] ns and [-11, -5] ns **B**) [-3, -3] ns and [5, 11] ns **C**) [-11, -5] ns and [5, 11] ns

<u>To remove the accidentals contribution, we select the clustering windows to :</u>

Example of the accidentals π° contribution with the Minv

\rightarrow LD2 target : 20% to 30% accidentals π° contribution \rightarrow LH2 target : 13 % accidentals π° contribution

Accidentals π° contribution is not negligible, so it's necessary to subtract this contribution to the total 2-clusters events.

Example of the accidentals π° contribution with the Mx2

We can see the difference on the number of events when we apply the accidentals π° subtraction

Raw data - Acc - Pi0 (kin2_High_LD2)

Global results after contamination subtraction for each target

DVCS = Raw data - Accidentals 1 cluster - (π° - Accidentals 2 clusters)

Kin2_High_LD2

 $\approx 47 \%$ of accidentals contribution + π° contamination

 $\approx 49 \%$ of accidentals contribution + π° contamination

Fermi motion added to the LH2 target

\rightarrow Proton at rest in the LH2 target but not in the LD2 target

→ necessity to add the fermi motion to the LH2 target's proton for the target subtraction

\rightarrow The fermi motion is a smearing on the proton momentum and the proton mass to take into account the initial motion of the proton in the nucleus

Distribution of fermi momentum

Global results after LD2-LH2 targets subtraction

→ Normalization by the charge of each run was performed to subtract the targets → Fermi motion was included to the LH2 target data

(LD2-LH2) Kin2 High

Conclusion:

We notice a shift of the Mx2 peak between the LD2 target and the LH2 target : \rightarrow due to the calorimeter calibration, fermi motion, π° subtraction method ... ?

Comparison of 2 parallel analysis for the contamination subtraction (same cuts applied)

Raw data (kin2_High_LD2)

16

Pi0 data (with accidentals 2-d subtraction) (kin2_High_LD2)

LD2 Target : Malek results (blue) / My results (red)

Accidentals 1-cl (kin2_High_LD2)

Raw data - Acc - Pi0 (kin2_High_LD2)

Comparison of 2 parallel analysis for the contamination subtraction (without fermi motion)

LH2 Target (*without* fermi motion) : Malek results (blue) / My results (red)

Raw data (kin2_High_LH2)

Pi0 data (kin2_High_LH2)

Accidentals 1-cl (kin2_High_LH2)

raw data - acc - pi0 (kin2_High_LH2)

Comparison of 2 parallel analysis for the contamination subtraction (without fermi motion)

LH2 Target (*without* fermi motion) : Malek results (blue) / My results (red)

Raw data (kin2_High_LH2)

L8

Pi0 data (kin2_High_LH2)

Accidentals 1-cl (kin2_High_LH2)

raw data - acc - pi0 (kin2_High_LH2)

Comparison of 2 parallel analysis for the contamination subtraction (with fermi motion)

LH2 Target (with fermi motion) : Malek results (blue) / My results (red)

Raw data (kin2_High_LH2)

Accidentals 1-cl (kin2_High_LH2)

Comparison of the LD2-LH2 targets subtraction

(LD2-LH2) Kin2_High

Conclusion:

→ We notice the same shift of the Mx2 peak between the LD2 target and the LH2 target for Malek results

To get Deuterium results ... (the next tasks)

Comparison of the 2 analysis for the contamination subtraction to improve

Investigation of the relative calibration of the targets (= shift of the Mx2 peak between LD2 and LH2)

Analysis of the kinematic kin2Low

Studying the impact of the cuts variations on the Mx2

22

Back up

Contamination subtraction to the DVCS (ep(n) \rightarrow e'p'(n')y)

We apply a cut on the Mx2 $(Mx^{2} < 1.15GeV^{2})$ to discard the inclusive π° events from the raw data.

...

Kin2_High_LD2

Contamination subtraction to the DVCS (ep(n) \rightarrow e'p'(n')y)

Accidentals :

24

→ DVCS photons in the [-3, 3] ns coincidence window

\rightarrow Photons **not related to the trigger electron** are detected in the [-3, 3] ns <u>coincidence</u> window (= not coming from the vertex)

→ Uniform contamination in the time on the 128 ns of the acquisition window

Arrival time of second cluster (in ns)

Contamination subtraction to the DVCS (ep(n) \rightarrow e'p'(n')y)

Accidentals 1 cluster : \rightarrow 1 photon detected in the coincidence window \rightarrow [-11, -5] ns or [5, 11] ns

Accidentals 2 cluters (3 types) : \rightarrow A) 2 photons related to a π° , so the both in coincidence \rightarrow [-11, -5] ns and [-11, -5] ns \rightarrow B) 2 photons not related to a π° , with one of them in coincidence \rightarrow [-3, -3] ns and [5, 11] ns \rightarrow C) 2 photons not related to a π° , and none of them in coincidence \rightarrow [-11, -5] ns and [5, 11] ns

<u>We shift in time the 6 ns acquisition window to take only accidentals events</u>

Arrival time of first 10 cluster (in ns) 5 ns 3 ns -3 ns -5 ns -8 Camsonne A.

Raw data = $DVCS + Accidentals + \pi^{\circ}$

Arrival time of second cluster (in ns)

Check of the accidentals 2 clusters subtraction with the Minv

26

oť

Cross check of the LD2-LH2 targets subtraction

(LD2-LH2) Kin2_High

LD2 – LH2 : M. Ben Ali results (blue) / My cross check results (red)

