Normalization studies for Hall A DVCS experiments

Maxime Defurne - SPhN

Plan

- Experimental Setup
- Introduction Motivation
- Multitrack correction
- HRS Acceptance
- Results and Discussion/Conclusion

Introduction / Motivation

- DVCS experiment from October to December 2010.
 - x=0.36 ; Q²=1.5 , 1.75, 2; At two beam energies
- During almost all the experiment, Trigger = S2 + Cerenkov
- Detect ALL electrons going through the spectrometer.

Introduction / Motivation

- Able to extract the well-known Deep Inelastic scattering cross section.
- Two interests:

 Check the normalization (Charge, deadtime, acceptance,...) and evaluate some systematical errors.
 - Quality analysis

DIS cross section

- Compute expected DIS cross section thanks to Monte Carlo simulation and parametrization of structure function F2 [1].
- Extract DIS cross section from data.

 $\frac{d\sigma}{d\Omega dE} = \frac{N_{events}}{\text{Lumi} \times \text{Eff} \times \text{livetime} \times \text{Acc} \times \Delta \Omega \Delta \text{E}}$

[1] Ingo Schienbein, Voica A. Radescu, G.P. Zeller, M. Eric Christy, C.E. Keppel, et al. A Review of Target Mass Corrections. *J.Phys.*, G35:053101, 2008.

DIS cross section : Event selection

- Select only single track event

 Failure to reconstruct track if more than one track.
- Cut in the center of HRS acceptance (phase space).
- Cut on the pion rejector energy deposit
 - Remove δ -ray contribution.

Multitrack correction

- If n-track events are n particles in coincidence:
 -> r = probability for 2 particles in coincidence
 - -> then rⁿ for n particles in coincidence

Multitrack correction

- Removing good events by selecting 1-track events.
- By looking at the Pion Rejector:

Mostly δ -rays in the vdc

Between 1-2% correction, Same values found for kin2 and kin3 2004 DVCS experiment

HRS acceptance

- There were two problems:
 - Mislocated collimator (left)
 - Mismatch between data and Rfunction

We cut into the collimator and remove the bands in Rfunction.

HRS acceptance

Kin3low was running without collimator:
 -> Test of the software collimator

Rval>0.005+(dp/p:y)

- Rval>0.005+(dp/p:y)+software collimator
- Rval>0.005

Systematic on HRS acceptance: 1%

Summary of the results

Kinematics	Experimental Cross section	Theoretical Cross section	Relative difference	Stability
Ebeam=3.355 GeV Q ² =1.5 GeV ²	9.26	9	+2.8%	1.6%
Ebeam=5.55 GeV Q ² =1.5 GeV ²	53.3	55.2	-3.4%	1.3%
Ebeam=4.455 GeV Q ² =1.75 GeV ²	13.14	13.14	0	2%
Ebeam=5.55 GeV Q ² =1.75 GeV ²	27.9	28.93	-3.4%	1.3%
Ebeam=4.455 GeV Q ² =2 GeV ²	6.9	6.6	+4.5%	4%
Ebeam=5.55 GeV Q ² =2 GeV ²	15.26	15.93	-4%	2.2%

Discussion: Which BCM do we use?

- Downstream BCM had some jump in gain.
- Upstream BCM calibration is not perfect (jump in the cross section before and after calibration).
- Problem:

2% difference between them for kin3low.

-> Systematic on charge???

Kin3low: About BCM??

Conclusion

- Except for the kin3low, very good stability of the cross section over the different kinematics.
- Experimental results are in good agreement with the parameterization.
- Sytematic on deadtime?
- Expect very good DVCS and pi^0 electroproduction cross section!

$$\int_{\Gamma_{DIS}} \frac{d\sigma}{d\Omega dE} (E^i, Q^2, x_B) d\Omega dE = \alpha \times \frac{d\sigma}{d\Omega dE} (E^{beam}, Q^2_{nom}, x_{B_{nom}}) \times \Gamma_{DIS}$$
(19)

Then one straightforwardly gets:

$$\alpha = \frac{1}{N_{sel} \times \frac{d\sigma}{d\Omega dE}(E^{beam}, Q^2_{nom}, x_{B_{nom}})} \sum_{k=1}^{N_{sel}} \frac{d\sigma}{d\Omega dE}(E^i_k, Q^2_k, x_{Bk})$$
(20)