The GMp Experiment in 2014

Vincent Sulkosky

Longwood University for the E12-07-108 Collaboration

E

RSI

Outline

- The GMp Experiment:
 - Goals and Physics Motivation
- Equipment Updates
 - Target: cryo and wire target
 - Scattering Chamber and Restrictions
 - > HRS Detector Packages
- Beam Characterization
 - Charge (BCMs)
 - Energy (ARC, etc)
- Preparation Status (See Barak's Talk)

Introduction

In the Born approximation, the elastic cross section for elastic *ep* scattering can be written:

$$\frac{d\sigma}{d\Omega} = \sigma_{\text{Mott}} \frac{\epsilon (G_E^p)^2 + \tau (G_M^p)^2}{\epsilon (1+\tau)},$$

where

$$\sigma_{\rm Mott} = \left(\frac{\alpha}{2E} \frac{\cos\frac{\theta}{2}}{\sin^2\frac{\theta}{2}}\right)^2 \frac{E'}{E},$$

and $au = Q^2/4M_p$ and $\epsilon = [1+2(1+ au) \tan^2 heta/2]^{-1}$

Goals for GMp

- Accurately measure e-p elastic cross section in kinematics similar to other JLab form factor measurements (Q² = 7-14 GeV²)
- Improve accuracy of the cross section by as much as a factor of 5 (< 2%) over previous measurements</p>
- Key input to all form factors and many of other experiments, where elastic scattering is used for normalization
- Approved for 24 PAC days

Kinematics

E_e	Q^2	$ heta_e$	E'	ϵ	Rate	Time	Events
(GeV)	(GeV) ²	(deg)	(GeV)		(Hz)	(hours)	
4.8**	7.0	71.0	1.08	0.25	0.80	5.2	30k
6.6	7.0	35.4	2.87	0.62	6.21	0.7	30k
6.6	8.0	42.0	2.35	0.51	1.90	2.2	30k
5.8**	9.0	77.0	1.00	0.18	0.16	26.1	30k
6.6	9.0	52.0	1.78	0.37	0.40	10.3	30k
8.8	9.0	29.3	4.00^{*}	0.67	2.82	2.9	30k
6.6	10.0	67.0	1.25	0.23	0.12	34.1	30k
8.8	10.0	33.3	3.46*	0.59	1.09	7.6	30k
8.8	11.0	38.0	2.94	0.51	0.44	9.4	30k
8.8	12.0	44.0	2.42	0.41	0.17	23.8	30k
8.8	13.0	53.0	1.86	0.30	0.05	69.0	24k
11.0	13.0	31.3	4.06^{*}	0.58	0.30	21.7	24k
11.0	14.0	35.0	3.53*	0.50	0.14	40.3	20k

PAC Approved 24 days

LONGWUUD UNIVERSITY

Numbers assume 80 μ A for 15 days!

5

Y

Expected Precision

Systematic Uncertainties

Uncertainties give in $\Delta\sigma/\sigma$ (%)

Source	Point-to-point	Normalization
Incident energy	<0.3	
Scattering Angle	0.1-0.3	
Incident Beam Angle	0.1-0.2	
Radiative Corrections*	0.3	0.4
Beam Charge	0.3	0.4
Target Thickness/Density Fluctuations	0.2	0.5
Spectrometer Acceptance	0.4-0.8	0.6-1.0
Endcap Subtraction	0.1	0.1
Detector efficiencies/dead time	0.3	0.4
Sum in quadrature	0.8-1.1	1.0-1.3

Control of Systematics

- DAQ and Trigger:
 - EDTM pulser for dead time measurements
 - Achieved 10 kHz with 20% dead time
- Tracking efficiency:
 Use front chambers of FPP with VDCs
- Target density
 - Use precise optics to provide software cuts on vertex
 - Use race-track cell targets with vertical flow to minimize fluctuations
- Solid angle: a benefit of improved optics
- Scattering angle: precise determination of target location using crosshair wire target

Modifications to Instrumentation

- Strong arm wire target:
 - Design completed
 - Cost: \$3k to \$5k, saved \$8k by using old radiator mechanism
- > HRS detector stacks:
 - Design completed
 - Add one chamber of FPP to both stacks
 - ➢ Attach S0 to FPP chamber
 - Shorten extension box for LHRS gas Cherenkov by 10 cm
 - Cost: \$20k (mostly from labor, trying to reduce this cost)
- > Target scattering chamber
 - > Design completed, components should be onsite.
 - > Allows to run DVCS (LHRS) and GMp (RHRS) concurrently
 - ≻ Cost: ~ \$50k

Beamline

Critical Items:

- 1. Energy
 - a. ARC measurement will be recommissioned in Spring 2014
 - b. Single Hall Spin Dance will not be attempted until later: Requires Compton and Møller polarimeters.
 - c. Elastics may not be feasible, especially at the higher energies as a cross check.
- 2. Charge
 - a. Standard Beam Current Monitor (BCM) electronics
 - b. For Spring 2014, the original electronics will be used, while the Kharkov group:

Check status, obtain experience, determine problems/issues

- c. The electronics will be upgraded to that used for QWeak.
- d. The Unser will also play a pivotal role in Hall A.

LONGWOOD UNIVERSITY

HRS Optics and Angle: Crosshair Target

Wires:

 \geq

IVERSITY

N

- 0.5" apart along the beamline
- 1/16" (~1.6 mm) apart transverse to beam

Wire target, reproducibility of 100 microns sufficient Design being changed by Dave Meekins, should be finalized early

next year.

Toward Precision Angle Measurements

- 1. Collimator plate in front of Q1
- 2. Crosshair target
 - Both will be carefully surveyed with a FaroArm
 - Expect to achieve angle precision at 0.2 mrads.
- 3. BPM positions (~ 100 microns)
- 4. Front floor plates for spectrometers
- 5. Linear Variable Differential Transformers (LVDTs) are being revived, sensitive to mis-pointing offsets.

ERSIT

New Narrow DVCS Support Stand

DVCS: –8.5° and 2.0 m from target center HRS-L: 20.2° HRS-R: -43.0°

Angle Restrictions

Restrictions from scattering chamber design:

- > LHRS: 12.5° to $< 48^{\circ}$ (> **18° with calorimeter**)
- > RHRS: -33.7° to $< -78^{\circ}$ (> 45° with calorimeter)
- DVCS calorimeter: < -20°</p>

Target Configuration

- ➢ 15 cm LH2
 - Large 3 inch cell
 - ➤ Vertical flow
 - Reduce density fluctuation
- Large vertical acceptance requirement for DVCS (20 degrees)
- Solid targets
 - less than 2% radiation length for March running
 - Standard dummy target (Al foil)
 - Standard optics target (5 foils)
 - > Empty

LONGWOOD UNIVERSITY

Updates from D. Meekins Expected for use in March 2014

HRS Detector Stacks

Standard detectors with one plane of FPP

UN

Manpower

Spokespeople:

J. Arrington, E. Christy, S. Gilad, B. Moffit, V. Sulkosky, B. Wojtsekhowski

Graduate Students:

Longwu Ou (MIT) Yang Wang (W&M) Gautam Thir Narayan (Hampton Univ) Barak Schmookler (MIT) (potential student)

Manpower

HRS detectors/DAQ:

- Longwu Ou, Barak Schmookler, Kalyan Allada (MIT)
- > Yang Wang (W&M)
- > Daniel Kirby (CMU)
- Igor Rachek (Budhker)
- Vincent Sulkosky (Longwood Univ)
- Sergey Abrahamyan, Karen Ohanyan, Galust Sargsyan, Albert Shahinyan (YerPhy)
- Alexandre Camsonne, Bogdan Wojtsekhowski, Robert Michaels, Bill Gunning, Jack Segal, Susan Esp, Chris Cuevas (JLab)
- > Online/offline Software
 - Longwu Ou, Barak Schmookler, Kalyan Allada (MIT)
 - > Yang Wang (W&M)
 - Ole Hansen (JLab support)

> Target

≻

- > JLab Target group (D. Meekins et al.)
- Jian-Ping Chen (JLab)

Simulations:

- Eric Christy (Hampton)
- > Gautam Thir Narayan (Hampton)
- Longwu Ou and Barak Schmookler (MIT)

LONGWOOD UNIVERSITY

Summary

- Precise e-p elastic cross-section measurement at Q² up to 14 GeV²
- > Progress made in preparing for the experiment:
 - Target design complete
 - ➤ Much work in the HRS (see Barak's talk)
 - Detector checkout in progress
 - Angle measurement, survey plans, floor marks (plates)
- Getting ready for Hall commissioning run in March, 2014
 Eull production run in Eall 20141
- Full production run in Fall 2014!

DVCS-GMp Cooperation: Dual Running

(Note: This is an old slide but good to start a discussion)

GMp and DVCS install together (except DVCS calorimeter)

1) GMp runs independently:

- a) Restrictions on HRS angles from vacuum chamber and DVCS stand
- b) Restrictions on HRS movement from DVCS cables and stand, HRS movement will require manual assistance
- 2) One week shutdown to install DVCS calorimeter
- 3) DVCS runs ~ 3 PAC months:

GMp takes parasitic data with right HRs at large angles

Stability of all parameters is a key criteria to achieve the required precision for GMp.

Systematic Uncertainties

Point to point uncertainties

Source	Δσ/σ (%)	Parameters
Incident energy	<0.3	3×10-4
Scattering Angle	0.1-0.3	
Incident Beam Angle	0.1-0.2	
Radiative Corrections*	0.3	
Beam Charge	0.3	I × I 0 -3
Target Density Fluctuations	0.2	
Spectrometer Acceptance	0.4-0.8	0.1 mrad
Endcap Subtraction	0.1	
Detector efficiencies/dead time	0.3	
Sum in quadrature	0.8-1.1	

Systematic Uncertainties

Source	$\Delta\sigma/\sigma$ (%)			
Normalization uncertainties				
Beam Charge	0.4			
Target Thickness/Density	0.5			
Radiative Corrections*	0.4			
Spectrometer Acceptance	0.6-1.0			
Endcap Subtraction	0.1			
Detector efficiencies and dead time	0.4			
Sum in quadrature	1.0–1.3			
Statistics	0.5–0.8			
Total (Scale+Rand.+Stat.)	1.2–1.7			
* Not including TPE				

FPP (front chambers)

 Problems: gas consumption > 50 l/h HV trips often due to gas, many dead wires/some electronics.
 Done: repair of dead electronics; built parallel gas distribution.

Still to do: HV distribution in one PC; gas distribution should be as wide as a straw block; HV test wires.

Recent: First chamber main work is completed;
second in progress and expect completion in
1 month; hardware electronics not yet started.

Already 1 FTE year has been spent on FPP

VDC Improvements

- Upgrade electronics to use 1877S, which allows sparsification
- Replace aging A/D cards and reuse BigBite cards
- Provide very good stability against oscillations and rate capability of 8 MHz (in full chamber)
- LHRS and RHRS completed and tested
- Software still needed for Fpp chamber and for cosmics checks
 PS +6.0V

Gas Cherenkov Improvements

- Reflectivity measurements of HRS GCC mirrors in progress
 - Both HRS mirrors completed
 - Two spare mirrors recoated and checked
- Reflectivity is within a few percent of published results
- In progress of checking relative response of PMTs and will replace those as needed; ~ 70 to test

Cosmic mirror calibration

RSI

