Polarized ³He Simulations - incomplete

Mongi Dlamini

Ohio University

December 20, 2013

Mongi Dlamini (Ohio University)

Polarized ³He Simulations

December 20, 2013 1 / 14

- Nucleus of ³He is n & 2p
- Makes ³*He* approximately appear as a single neutron when polarized
- ³He provides better access to a polarized neutron target

Figure: www.ncnr.nist.gov

- thesis work from M.Canan, presented by C.Hyde at the HallC Collaboration Meeting in January 2013
- DVCS off polarized neutron gives acces to $E_n(\xi, \xi, t)$
- ³*He* target with polarization of 60%, neutron luminosity $3 \times 10^{36} cm^{-2} s^{-1}$, beam polarization of 80%, gives measurement to 10 to 15 % precision.
- at $Q^2 = 3.05 GeV^2$, $x_B = 0.36$,in 16 days.

...more background

Previous work(s)

M.Canan estimated counting rates as function of luminosity, solid angle & Cross section, calculated at the middle of the acceptance

Previous work(s)

M.Canan estimated counting rates as function of luminosity, solid angle & Cross section, calculated at the middle of the acceptance

Canan's Limitations and possible areas of extension

- Computation of cross section
 - Need to consider a realistic geometry, extended target and physical effects such as multi-scattering
- Need to consider Fermi motion
- flactuation of virtual q vector.

Goal

- Start off by reproducing M. Canan's result
- Introduce extended target approach & Introduce Fermi Smearing

Simulation

- Simulation is Rafayel Paremuzyan's work
- GEANT4 Simulation actual ³*He* geometry added
- Principal reaction $N(\vec{e}, e'\gamma)N$
- Events generated randomly with distributions on kinematic variables(x_B,t, Q²,φ) plus radiative corrections
- Scattered electron simulated up to HMS window
- Photon is detected in calorimeter
- Missing mass used to isolate DVCS events

Input Cross sections

- VGG used to compute cross sections as function of E, Q^2 ,t, x_B , ϕ
- Beam-target spin can be Longitudinal(z) or Transverse(Tx,Ty); hence cross sectionsσ⁺⁺, σ⁺⁻, σ⁻⁺, σ⁻⁻
- input cross section grid 5 dimensional(E, Q^2 ,t, x_B , ϕ) with intervals $\Delta \phi = 15 deg$, $\Delta x_B = 0.1$, $\Delta Q^2 = 1 GeV^2$, $\Delta t = 0.03 GeV^2$ and relevant Jlab beam energies.

Input Cross sections Neutron; Comparing VGG result with Canan

 $Q^2 = 3.05 GeV^2$, $K_e = 8.8 GeV$, $-t = 0.213/0.313 GeV^2$, $x_B = 0.36$, Jd = -0.3/0.0

More capabilities..

э

<ロ> (日) (日) (日) (日) (日)

...Input Cross sections Neutron::Convincing

 $-t = 0.213 GeV^2$, Jd = 0, reproduces Canan's result better

Neutron, Proton contributions in ${}^{3}He$ cross sections

 $\Delta \sigma^{^{3}He} = 0.85 \sigma^{N} - 2(0.028) \sigma^{P}$::we can't ignore proton contribution!

3

Results- kinematics over acceptance, statistics!

Mongi Dlamini (Ohio University)

Polarized ³He Simulations

December 20, 2013 12 / 14

Results- Calculating errors/uncertainty in cross section

• DS uncertainty in each bin in ϕ calculated; $\Delta \sigma^{TS} = \frac{1}{P_t} \sqrt{\frac{\sigma_{sum}}{L\Omega}}$ • $\sigma_{sum} = \sigma^{++} + \sigma^{+-} + \sigma^{-+} + \sigma^{--}$

Figure: C. Hyde, DVCS January 2013 talk

• Work still in progress

- increase statistics
- Fermi motion effects
- geometry effects
- counting rates and uncertainities
- On a different note, relocating to Jlab soon, to stay for atleast a year
- to carry on with project (in about a month), and
- looking forward to be engaged in upcoming experiment setups and other projects

The End, Thank you