TDIS meson production – a theory perspective

Patrick Barry, Jefferson Lab

Science at Mid x, July 23rd, 2022

In collaboration with Chueng-Ryong Ji, Wally Melnitchouk, and Nobuo Sato

heo

Pion PDFs in JAM

Large- x_{π} behavior

- Generally, the parametrization lends a behavior as $x \to 1$ of the valence quark PDF of $q_v(x) \propto (1-x)^{\beta}$
- For a fixed order analysis, analyses find $\beta pprox 1$
- Aicher, Schaefer Vogelsang (ASV) found $\beta = 2$ with threshold resummation

Phys. Rev. Lett. 105, 114023 (2011).

JAM analysis with threshold resummation

Introduction of lattice QCD data

• JAM has also included recent simulations on the lattice to constrain pion PDFs

5

Datasets -- Kinematics

- Current

 experimental data
 is limited
 kinematically with
 little overlap
- Can JLab TDIS help us learn more about pion PDFs?

Sullivan process

- Impose kinematic cuts on experimental data
- Such as lower limit on the totally *inclusive* W²

Sullivan process and W_{π}^2

- Impose kinematic cuts on experimental data
- Such as lower limit on the totally *inclusive* W²
- What about the W_{π}^2 ?

Current 11 GeV TDIS kinematics

• Plotting available 11 GeV TDIS kinematics with a few representative W_{π}^2 curves

What to choose for W_{π}^2

- HERA did not measure the low- W_{π}^2 region
- Potentially largest resonance comes from the ρ-meson
- Must be well above the peak of the resonance
- Estimating the safe region to be an energy above 95% of the area under the curve

Choosing $W_{\pi,\max}^2 = 1.04 \text{ GeV}^2$

Removing all data points that could be contaminated by resonance regions

Total pion kinematics

Performing impact study with 11 GeV

 Create pseudodata from these points and perform global analysis with available experimental data

Upgrade to 22 GeV

- Much more available kinematic range in (x, Q^2)
- Recall the W_{π}^2 cut removed large x_{π} and small Q^2 data
- New blue points will survive the cut

Kinematics with 22 GeV

• MASSIVE increase in available data points

Total kinematics

• Much larger range in x_{π} and Q^2

Impact on pion PDFs with 22 GeV

- Sizable impact on pion PDFs, especially compared with the 11 GeV beam
- Knowledge of pion PDFs increases dramatically with 22 GeV beam

Brief words on kaon TDIS

- Sullivan process applies, but a hyperon must be tagged
- Consider again, not only inclusive W^2 but W_K^2

Resonance from K^*

• The K^* resonance is much more narrow than for ρ meson

•
$$W_{K,\max}^2 = 1 \text{ GeV}^2$$

Kinematics for 11 GeV Kaon TDIS

• Beware of such large |t| further away from kaon pole

Kinematics for 22 GeV Kaon TDIS

Accepting of more points at smaller |k|

Conclusion

- Impacts from the 11 GeV TDIS experiment on pion PDFs will be limited, but can test the large- x_{π} behavior inferred from the Drell-Yan data
- The 11 GeV TDIS can measure the low- W_{π} pion structure function
- Much more constraints will come from larger 22 GeV upgrade
- Kaon PDF analysis may be more realistic with energy upgrade

Backup slides

Formula for
$$W_{\pi}^2$$

• Dependent on the external tagged kinematics

$$W_{\pi}^2 = t - Q^2 \left(1 - \frac{\bar{x}_L}{x} \right)$$

Range in *t* from HERA

EIC impact

• How much will EIC give relative to JLab 22 GeV upgrade?

