Inclusive DIS, SIDIS, and Accessing Nuclear Pions with TDIS

Dave Gaskell (JLab) and Dipangkar Dutta (MSU)
Science at Mid-x: Anti-Shadowing and the Role of the Sea
July 22-23, 2022

Anti-Shadowing in Inclusive DIS

Anti-shadowing data/measurements from unseparated cross sections

- \rightarrow Can we improve precision/reach for σ_A/σ_D ?
- Is it the same for σ_T and σ_L ?

Inclusive Ratios

Anti-shadowing small effect (~few %) → normalization uncertainties crucial

- → At JLab, normalization uncertainties for A/D ratios typically ~1.5%
- → Could be improved with extra effort (improved solid target thickness measurements, etc.), but difficult to overcome uncertainty in cryotarget thickness

NMC measurements achieved ultimate precision to-date

- → A/D: Normalization uncertainty = 0.4%
- → C/D: Normalization uncertainty = 0.2%

Nuclear Dependence of R?

Few direct measurements of R_A - R_D at any x, much less in anti-shadowing region

E140 made measurements from Fe and Au at x=0.2, 0.35 0.5

- → Original results consistent with no nuclear dependence
- → When re-analyzed to include Coulomb Corrections, some hint of non-zero R_A-R_D

Nuclear Dependence of R at large x

x=0.5 Q²=5 GeV²

Combined analysis of E140, E139, and JLab Hall C data suggests non-zero R_A-R_D at x=0.5

Other Hints of non-zero R_A - R_D

NMC results for R_{Sn} - R_C systematically larger than zero

$$R_{Sn} - R_C = 0.040 +/- 0.026 \text{ (stat)} +/- 0.020 \text{ (sys)}$$

$$\rightarrow$$
Averaged over x=0.0125 – 0.45
 \rightarrow 2> = 10 GeV²

What are the consequences for A/D ratios for F_1 and F_2 if this is true?

Consequences of R_A - R_D >0

$$\frac{\sigma_A}{\sigma_D} = \frac{F_1^A(x)}{F_1^D(x)} \left[1 + \frac{\epsilon(R_A - R_D)}{1 + \epsilon R_D} \right]$$

 F_1 ratio purely transverse

Anti-shadowing disappears for F_1 ratio, remains for F_2

Anti-shadowing from longitudinal photons?

E12-14-002 - Hall C @ 11 GeV

Precision Measurements and Studies of a Possible Nuclear Dependence of R Spokespersons: S. Malace, E. Christy, DG, C. Keppel, H. Szumila-Vance

Measure R_A - R_D for C, Cu, Au for x=0.1-0.6 \rightarrow Significant overlap with E140, but more x/Q² settings

E12-14-002 - Hall C @ 11 GeV

Limitations:

- 1. Modest Q² range at low x
- 2. Few targets (C, Cu, Au)
- 3. C and Au at only a subset of settings

proposed measurements

R_A-R_D at JLab24

x=0.15: At 22 GeV, radiative corrections grow quickly for angles larger than 10 degrees

- \rightarrow 22 GeV, 10 degrees \rightarrow Q²=4.36 GeV2, ε =0.57
- \rightarrow 17 GeV, 23.9 degrees, ε =0.17
- $\rightarrow \Delta \varepsilon = 0.4 \rightarrow \text{not ideal}$
- \rightarrow Q²=3 GeV² can be measured with $\Delta \epsilon \sim 0.6$

Other possible improvements: greater variety of targets, different N/Z, etc.

SIDIS at 24 GeV

SIDIS at higher energy discussed extensively at previous workshop

→ "The Next Generation of 3D Imaging": https://indico.jlab.org/event/539/

Experimental perspectives:

CLAS12: https://indico.jlab.org/event/539/contributions/10159/

SOLID: https://indico.jlab.org/event/539/contributions/10161/

Hall C: https://indico.jlab.org/event/539/contributions/10163/

Common theme: expanded phase space coverage (larger Q²) from mid to large x

SIDIS kinematical coverage and observables

CLAS12 at higher energy: Harut Avakakian

Jefferson Lab

22 GeV Hall C SIDIS Phase Space – HMS+SHMS

x = 0.7x = 0.518 GeV 20 Assumptions: HMS + 11 GeV phase SHMS minimum angle phase space constraints unchanged space x = 0.4→ Increase in HMS 22 GeV maximum momentum phase (higher field magnets) space (GeV/c)² x = 0.3→ Smaller HMS angle may be possible, but would require special bender like SHMS x = 0.2 \mathcal{Q}_2 HMS minimum angle limits low-x reach at higher energies 6 GeV phase space 7.5 15 17.5 20 5 12.5 ν (**GeV**)

Hall C SIDIS Phase Space – Smaller HMS angle

R in SIDIS

E12-06-104: Measurement of the Ratio $R=\sigma_L/\sigma_T$ in Semi-Inclusive Deep-Inelastic Scattering Spokespersons: R. Ent, P. Bosted, E. Kinney, H. Mkrtchyan

Is R in SIDIS same as DIS?

Same behavior at mid and large x?

What about nuclear dependence?

$$x=0.4$$
, $Q^2=4$ GeV²

$$x=0.15-0.4$$

$$x=0.3$$
, $Q^2=3$ GeV²

Nuclear Pions from SIDIS

Sensitivity to nuclear pions using SIDIS in anti-shadowing region?

E. Berger, ANL-HEP-CP-87-45, NPAS Workshop on Electronuclear Physics with Internal Targets

Pion contribution to SIDIS cross section at large z

$$\frac{d\sigma(x,Q^2,z)}{dxdydz} \propto \frac{1}{2} \left[1 + (1-y)^2 \right] (1-z)^2 + \frac{4}{9} (1-y) F_{\pi}(Q^2)$$

Only contributes to " H_2 " \rightarrow from long. photons. L-T separation needed

At x=0.15, Q²=3 GeV² JLab higher energy would allow access up to z=0.8 with W'>2 GeV

Measure with light nucleus like ⁴He where hadron attenuation effects are small

Would require higher beam energy and smaller angle capability for HMS (~6 degrees)

The TDIS program at Lab

Accessing the mesonic content of nucleons using the Sullivan process

Meson cloud model

$$|p> \rightarrow \sqrt{1-a-b}|p_0> +\sqrt{a}(-\sqrt{\frac{1}{3}}|p_0\pi^0> +\sqrt{\frac{2}{3}}|n_0\pi^+>)$$
$$+\sqrt{b}(\sqrt{\frac{1}{2}}|\Delta_0^+\pi^-> -\sqrt{\frac{1}{3}}|\Delta_0^+\pi^0> +\sqrt{\frac{1}{6}}|\Delta_0^0\pi^+>)$$

proton as a linear combination of a "bare" proton plus pion-nucleon and pion-delta states

The TDIS program at Lab

Uses the spectator tagging technique pioneered at JLab

Readout pads of mTPC

simulated mTPC tracks

-0.1

-0.05

X (m)

√ (m)

The TDIS program at Lab

Extract the pion structure function (projected results)

TDIS @ 20 GeV JLab

Extended kinematic coverage, better constraints on t dependence

TDIS and Nuclear Pions

Use TDIS setup to measure the pionic content of ³He and ⁴He

Bertsch, Frankfurt & Strikman, Science 259, 773 (1993)

TDIS Recoil proton momentum: $P_p = 0.1 - 0.4$ GeV/c & $P_p = -P_{\pi}$ look for excess pions relative to 2H

Also extract pion structure function from 2H , 3He and 4He allowing a pionic EMC effect measurement. $_{J_1}$ @ 20 GeV will allow high W 2 coverage of 0.05 < x < 0.3

Summary

- Measurement of $R = \sigma_L/\sigma_T$ in anti-shadowing region important to clarify whether anti-shadowing is present on both σ_L and σ_T
 - Approved Hall C E12-14-002 will measure R_A-R_D for C, Cu, and Au
 - Larger Q² range, lower x accessible w/higher energy
- SIDIS
 - Larger Q² range at low and high x, large W' at large z
 - Hall C cannot access anti-shadowing region above E=13-14 GeV
 - L-T separations → access to nuclear pions?
- TDIS
 - Nuclear pions using tagged DIS

EXTRA

A-Dependence from NMC

E12-14-002: Radiative Corrections

Radiated QE and elastic fraction of total radiated cross secxtion for E12-14-002

E12-14-002: CSBG and Coulomb Corrections

Charge symmetric backgrounds and Coulomb corrections for E12-14-002

