Inclusive Data, Current and Projections

IOANA NICULESCU JAMES MADISON UNIVERSITY

High Energy Workshop Series 2022 Science at Mid x: Anti-shadowing and the Role of the Sea

Extending nPDF Analyses into the High-x, Low-Q2 Region, 114015 (2021) 103, Segarra et al., Phys. Rev. D nCTEQ15HIX -E.P. Separro

World Data: BCDMS, EMC, NMC, SLAC, FNAL, Hermes, JLab

Targets: He, Be, Li, C, N, Al, Ca, Fe, Cu, Kr, Ag, Sn, Xe, Au, Pb

Upcoming Hall C Data: E12-06-105 and E12-10-008

Targets:

He3, He4, Li, Be, B10, B11, C, Al, Ca40,Ca48, Ti, Fe, Ni58, Ni64, Sn, Cu, Ag, Au, Th.

Х

Fe-56

Radiative Corrections (calculations by D. Gaskell)

SHMS at 5.5 degrees

Radiative Corrections

SHMS at 10 degrees

Radiative Corrections

SHMS at 30 degrees

Charge Symmetric Background (calculations by G. Niculescu using P. Bosted code)

(S)HMS at 10 degrees

Charge Symmetric Background

(S)HMS at 30 degrees

Summary and Outlook

Mid-x region is challenging: high RC and CSB corrections.

What measurements would be interesting in inclusive (e,e')?

Nuclear Dependence of R

$$\frac{\sigma_A}{\sigma_D} = \frac{F_1^A(x)}{F_1^D(x)} \left[1 + \frac{\epsilon(R_A - R_D)}{1 + \epsilon R_D} \right]^{-1}$$

 F_1 ratio purely transverse

Anti-shadowing disappears for F_1 ratio, remains for F_2

Anti-shadowing from longitudinal photons?

V. Guzey et al, PRC 86 045201 (2012)