

Shashlik EMCAL Options for EIC

Craig Woody

Brookhaven National Lab

CORE Meeting July 12, 2022

Introduction

The calorimetry requirements for EIC have not changed since the Yellow Report.

	Backward -4 < η < -2	Backward -2 < η < -1	Barrel -1 < η < -1	Forwward 1 < η < 4		
Resolution $\sigma_{\rm E}/{ m E}$	2%/√E ⊕ (1-3)%	7%/√E ⊕ (1-3)%	(10-12)%/√E ⊕ (1-3)%	(10-12)%/√E ⊕ (1-3)%	Need to measure the scattered electron with good resolution and provide e/h separation	
Min E (GeV)	0.02	0.05	0.1	0.1	Require low E _{min} to measure decays	
Granularity ($\Delta \theta$)	< 0.02	< 0.02	< 0.025	< 0.01	γ/π^0 , e/h discrimination (~ $10^{-2} - 10^{-3}$)	
Space	∆Z = 60 cm	∆Z = 60 cm	∆Z = 30 cm	∆Z = 40 cm	Including all services	

Detector Technologies

The three initial proposals each selected different technologies for their central and forward calorimetry.

Forward Calorimeter Technology Choices

	EMCAL	HCAL		
ATHENA	W/SciFi (similar to sPHENIX)	Fe/Scint (similar to STAR FCS)		
ECCE	Pb/Shashlik	Fe/W/Scint Longitudinally Segmented (LFHCAL)		
CORE	W/Shashlik	Fe/Scint (similar to STAR FCS)		
Detector 1 (Recommended)	W/SciFi (ATHENA design)	Fe/W/Scint LFHCAL (ECCE Design)		

Barrel EMCAL for Detector 1 is still currently SciGlass (ECCE). Alternative is Pb/SciFi imaging design (ATHENA).

SciFi and Shashlik Technologies

- Both technologies are very mature and have been used by a number of experiments.
- The energy resolution can be tuned by changing the sampling fraction and/or the sampling frequency.
- The absorber (e.g., W, Pb) can be selected to optimize the desired properties of the calorimeter (e.g., cost, compactness, degree of compensation w/HCAL,...). Note: For EM calorimetry, the ability to use W absorbers in various forms allows for compact designs which utilize less space which is a prime consideration for EIC.
- The readout in both cases can be done on the ends of the calorimeter (either the front or the back or both) which allows a variety of different geometrical configurations.

(a) ATHENA related work, Introductory detector -1 meeting

- **e/h** ≠ 1 ٠
- $e/h_ecal \neq e/h_hcal$
- e/h = f(E)

eh

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

1.6

1.4

1.2

0.8

0.6

0.4

0.2 0

÷ 1.8

- $e/p \neq e/\pi$
- $f_{em} = 0.11 \ln[E(GeV)]$

Jet energy resolution is always poorer than for a single hadron. Despite ~ 20% of jet energy (em) measured very accurately by Ecal.

(a) Introductory detector-1meeting, pECal, e/h

Hypothetical variant, 9 interaction lengths long calorimeters. Same structure for Ecal and Hcal sections. Three different technologies:

- SHASHLYK (Phenix, STAR Forward)
- WScFi (STAR Forward 2014) compensated
- Fe/Sc (STAR Forward 2020)

Proper detector composition required for good hadronic resolution. I.e. desired to keep e/h as close as practically possible to 1. N.B. these are MC not an experimental results.

Shashlik Calorimetry for EIC

- Shashlik calorimetry was listed in the YR as one of the possible technologies for EIC over a wide range of rapidities (-2.0 < η < 4.0)</p>
- Shashlik calorimetry is a mature technology but most shashlik calorimeters that have been built so far have used Pb as the absorber.
- □ However, using W as an absorber has several advantages:
 - For the same total X0, a W shashlik calorimeter will occupy less space, either longitudinally along the beam direction or radially in the central barrel.
 - The R_M of W is much smaller than for Pb and the showers will be much smaller and therefore have less overlap with neighboring showers. (Improves γ/π^0 separation and e/h separation)
- □ Using W as an absorber also has some disadvantages:
 - W is more expensive and harder to machine.
 - It is more difficult and costly to make a shashlik calorimeter projective.

PHENIX Pb/Shashlik

Designed for heavy ion collisions $5.535 \times 5.535 \text{ cm}^2$ towers $\Rightarrow \Delta \eta = 0.01$, $\Delta \phi = 0.01$ at R = 5 m X0 = 2.1 cm, R_M ~ 5 cm Total absorber depth = 37.5 cm (18 X0, 0.85 λ_{int}) 3888 modules \Rightarrow 15,552 towers total

Resolutions

$$\frac{\sigma_E}{E} = \frac{8.1\%}{\sqrt{E}} \oplus 2.1\% \qquad \sigma_x = \frac{5.7 \ (mm)}{\sqrt{E}} \oplus 1.55 \ (mm)$$

 $\sigma_t \sim 200 ps$

1500 modules now deployed in STAR FCS w/ SiPM readout

KOPIO Pb/Shashlik Prototype

Development of Shashlyk calorimeter for KOPIO

G.S. Atoian^{a,b}, V.V. Issakov^{a,b}, O.V. Karavichev^a, T.L. Karavicheva^a, A.A. Poblaguev^{a,b,*}, M.E. Zeller^b

> ^a Institute for Nuclear Research of Russian Academy of Sciences, Moscow 117312, Russia ^b Physics Department, Yale University, New Haven, CT 06511, USA

Table 1

Transverse size

Holes spacing

Effective density

Active length

Total weight

Number of the layers

Lead absorber thickness

Number of holes per layer

WLS fibers per module

Diameter of WLS fiber

Diameter of fiber bundle

Nuclear Instruments and Methods in Physics Research A 531 (2004) 467-480

Can achieve very good energy resolution !

$$\frac{\sigma_E}{E} = (0.1 \pm 0.8)\% \oplus \frac{(3.8 \pm 0.1)\%}{\sqrt{E}} \oplus \frac{(0.8 \pm 0.6)\%}{E},$$

0.5 < E < 2.0,

C.Woody, Shashlik EMCAL Options for EIC, CORE Meeting 7-12-22

ECCE FEMC & LFHCAL

Note: Tower size << R_M

Reasons for Det-1 Choosing W/SciFi over Pb/Shashlik

- Ease of construction
- Less space needed for W/SciFi and better shower containment
- Costs comparable given unavailability of scintillator tiles from Uniplast and smaller calorimeter dimensions

Improving Shashlik Spatial Resolution

The availability of low cost SiPMs allows the possibility of reading out each fiber individually. This allows determining the shower position even within a Moliere radius.

A compact shashlik may also offer the possibility of improving the position dependence due to the short light path to the WLS fibers.

Ray tracing withing a scintillation tile

Non-uniformities of light collection within a tile will cause a position dependence. However, this can in principle be corrected for using lab measurements and ray tracing can produce a light collection map for each fiber.

Prototype W/Shashlik EMCAL

Originally designed for the NA64 Experiment at CERN (not optimized for EIC)

- Absorber plates are a W(80%)/Cu(20%) alloy that is easily machinable ρ = 17.2 g/cm³, X0 = 4.1 mm, 38 x 38 x 1.58 mm³
- Scintillating tiles: 38 x 38 x 1.63 mm³ injection molded polystyrene (Uniplast, Russia).
- 1 mm dia WLS fibers spaced on a 9.5 x 9.5 mm² grid
- 80 sampling layers, X0 = 8.5 mm, Total ~ 31 X0 (27 cm), R_M ~ 2.5 cm
- Each fiber read out with 3x3 mm² SiPMs

WLS fibers pass through stack in a slight spiral pattern to improve light collection uniformity and reduce dead areas

Each fiber coupled to small lucite light mixer

Hamamatsu S14160-3015P

Andres Bello University Santiago, Chile

S. Kuleshov

3x3 module prototype

C.Woody, Shashlik EMCAL Options for EIC, CORE Meeting 7-12-22

Shashlik GEANT Simulations

Z. Shi (LANL/MIT) I. Delk (ISU)

W/Cu Shashlik

Z. Shi (LANL/MIT) I. Delk (ISU)

TracePro Ray Tracing Light Collection Simulation

Fiber0: Col = 0 and Row = 0

WCu Shashlik Forward EMCAL Segmentation Configuration

- Individual fiber readout in green and EMCAL tower (16 fibers) in blue
 - Tower size 3.8 cm × 3.8 cm with 4 × 4 fiber readout (0.95 × 0.95 cm)

W/Cu Shashlik – Position and Energy Resolution

Effect of light collection map

Non-uniformity of light collection efficiency map

- Improves the position measurement
- Slightly worsens the energy resolution

Z. Shi (LANL/MIT)

C.Woody, Shashlik EMCAL Options for EIC, CORE Meeting 7-12-22

EMCAL Shashlik Calorimetry – Pb vs W

Energy resolution vs sampling fraction 20 X0 total length (L ~ 30 cm w/readout) Require fine segmentation and small R_M to resolve γ/π^0 at high momentum

Non projective geometry

Geant4 truth electron energy (GeV)

W Shashlik (Z.Shi Fig. 11.55 YR)

Note:

- Projective geometry will improve separation, particularly in the $\eta \approx$ 1-3 region
- Can also achieve γ/π^0 separation using a preshower detector

ECCE Pb/Shashlik Simulations

Study effect of changing the readout segmentation

Each green box is a single fiber readout (Tower × ½) (0.49 x 0.50 cm) Each blue box is an optically isolated EMCAL tower containing 4 fibers (0.98 x 1.00 cm) The red, orange, magenta, and cyan boxes define Tower × 2, Tower × 3, Tower × 4, and Tower × 6

Note difference in definition of "tower" for ECCE vs W/Cu prototype Z. Shi (LANL/MIT)

ECCE Pb/Shashlik EMCAL

Effect of Changing Readout Segmentation

- No change in position resolution up to Tower x 2 (~ 2x2 cm²)
- Same as W/Cu shashlik at ~ 4x4 cm² segmentation
- Constant term in energy resolution for WCu is slightly worse due to non-uniformity of light collection

(to appear in DIS 2022 Proceedings)

Summary & Conclusions

- A shashlik EMCAL can be designed to meet the physics requirements at EIC, both in the forward region and in the barrel. This can be achieved with both Pb and W absorbers.
- □ The use of a W absorber will make the calorimeter more compact, thus saving space and producing smaller shower sizes, but W is more expensive and difficult to work with. However, a W absorber may provide the best ultimate performance in terms of γ/π^0 and e/h separation at high p_T.
- The potential cost savings of obtaining scintillating tiles as final detector components from Uniplast is no longer a viable option. Therefore, the cost advantages of a shashlik over a SciFi design are greatly diminished.
- Designing and constructing a projective shashlik calorimeter is going to be more difficult and more costly than a SciFi design.

Backup

Cluster Algorithm

As a first step, apply the cluster finding algorithm developed for PHENIX (HI collisions) to forward EMCAL Apply cuts on total cluster energy and peak threshold for finding separate clusters

Obviously needs work in order to adapt algorithm for Forward EMCAL

Z. Shi (LANL/MIT)

sPHENIX W/SciFi EMCAL

Sectors and blocks are approximately projective and tilted in η and ϕ

sPHENIX W/SciFi EMCAL

- The sPHENIX EMCAL is a W/SciFi SPACAL consisting of a matrix of tungsten powder and epoxy with embedded scintillating fibers
 - 0.47 mm dia. fibers, spacing 1 mm, SF ~ 2%
 - Density ~ 9.0 g/cm³, X0 = ~ 7 mm, ~ 20 X0 total, R_M ~ 2.3 cm
- W/SciFi modules consist of 4 towers, each with its own light guide that is read out on the front with a 2x2 array of 3x3 mm² SiPMs (Hamamatsu S12572-015P)

SiPMs are susceptible to radiation and will receive a dose $\sim 10^{11}$ n/cm² over the currently 3 yr lifetime of sPHENIX

Modules will be re-instrumented with new SiPMs for EIC

Mold with W powder, fibers + epoxy

6144 Modules (24,576 towers)

Readout with light guides and SiPMs (~ 100K SiPMs)

Uniformity of W/SciFi - Effect on Energy Response

Non-uniformities are inherent in the design and contribute to the energy resolution

Uniformity of response over 8x8 towers with 8 GeV electrons (Test Beam Data)

Uniformity after position dependent correction

C.Woody, Shashlik EMCAL Options for EIC, CORE Meeting 7-12-22

Energy Resolution

Energy resolution after position dependent correction

sPHENIX EMCAL – Completed June 2022 – Installation Begins July 2022

Block Production at UIUC (also at Fudan U, PKU & CIAE) Module and Sector Production at BNL

2600 km of fiber 665 kg of epoxy 88 m² of screens

20 Tons of W powder

Blocks awaiting removal from molds

 Modules being glued into sectors

Future Developments for W/SciFi Calorimetry

We believe we can improve the light output, energy resolution and uniformity of response of the sPHENIX calorimeter by increasing the photocathode coverage for the readout of the absorber blocks. Two possible ways to increase photocathode coverage:

Light output from fibers is very uniform but light collection efficiency is low (~ 6 %)

Readout end of block

- array of 3x3 mm² SiPMs with four 6x6 mm²
 Remove or cut down existing light guides
 - Remove or cut down existing light guides and cover entire readout end of block with a 6x6 array of 6x6 mm² SiPMs.

Keep existing light guides and replace 2x2

Hamamatsu S13360 6x6 mm² SiPM with TSVs (50 μm pixels)

R0 010 MAX TYP

0.976

2X 0.245

0.488

Note small gaps Short light guide covering entire block

2X 0 24

C.Woody, Shashlik EMCAL Options for EIC, CORE Meeting 7-12-22

HiRes W/SciFi

PMT Readout with long light guides

eRD1 Report Jan 2016

Detector	Fibers SCSF 78	Absorber	Sampling Frequency	Composition by weight	Number of fibers in superblock
"Old" High sampling frequency	Round, 0.4mm	75% W 25% Sn	0.671 mm Staggered Pattern	W -0.665 Sn - 0.222 Sc - 0.057 Epoxy- 0.056	25112 Damaged 3
"Square" High sampling fraction	Square, 0.59 x 0.59 mm ²	100% W	0.904 mm Square Pattern	W - 0.858 Sc- 0.075 Epoxy- 0.067	11664 Damaged 0

O.Tsai (UCLA)

eRD1 Report July 2016

g-2 W/SciFi

Fiber ribbons embedded between 0.5 mm W plates

Also tried this in an "accordion" configuration in eRD1

Fig. 7. Fits to resolution versus energy in the central module of an array of W/SciFi modules. Three entrance width cuts are imposed: 25 (dotted); 5 (dashed); and 1 mm "pencil" (solid).

R. McNabb et al. / Nuclear Instruments and Methods in Physics Research A 602 (2009) 396-402