CORE and Physics Beyond the Standard Model

Barak Schmookler (UC Riverside) Rudy Popper (SBU)

1

Outline

- Inclusive electron parity-violating asymmetry (A_{pv}) and pion suppression requirements
- Simulating negative pion background to scattered electron
- CORE pion suppression capabilities -- parameterization and Fun4All simulation

Parity-violating asymmetry at the EIC

Callan-Gross relation used

Statistical uncertainty on asymmetry measurement:

$$\sigma_{A_{pv}} = \frac{\sqrt{1 - A_{pv,meas}^2}}{P_e \sqrt{N}} \approx \frac{1}{P_e \sqrt{N}}$$

- Inclusive parity-violating asymmetry measurements can be used to constrain PDFs
- Using eD data, extraction of weak mixing angle is possible
- > See recent <u>CFNS workshop</u> for details.

Expected asymmetries and statistical uncertainties at the EIC

Expected asymmetries and statistical uncertainties at the EIC

5

Results are similar between PDF sets

Strictest requirement on electron purity

Strictest requirement on electron purity

$$A_{pv}^{e^{-}} \implies A_{pv}^{e^{-}} \approx finy$$

$$A_{pv}^{\pi^{-}} \approx \emptyset$$

 $\begin{pmatrix} \Delta A_{pv}^{e^{-}} \\ A_{pv}^{e^{-}} \end{pmatrix}_{\pi \bar{s} \gamma \bar{s}} \approx \int_{\pi} \int_{\pi} \begin{pmatrix} A_{pv}^{\pi^{-}} + \Delta A_{pv}^{\pi^{-}} \\ A_{pv}^{e^{-}} \end{pmatrix}$ ~ f=-

In order to limit the (uncorrelated) systematic uncertainty to 1%, we need a final pi-/e- ratio of better than 10⁻²

Start by using *Pythia6* to generate events all the way down to the minimum possible Q²

10 GeV e on 100 GeV p

10 GeV e on 100 GeV p

Start by using *Pythia6* to generate events all the way down to the minimum possible Q²

10 GeV e on 100 GeV p

10 GeV e on 100 GeV p

Start by using *Pythia6* to generate events all the way down to the minimum possible Q²

10 GeV e on 100 GeV p

10 GeV e on 100 GeV p

I estimate that events with W< 2 GeV are ~5% of the total cross section. So, ignoring those events is a small effect. Then look at the scattered electron (the signal) and negative pions (the background) momentum distributions in different angular bins in the central detector region

7/12/22

12

Also, at a given angle, we will only consider momentum values that satisfy both some minimum Q² requirement (>1 GeV²) and maximum y requirement (< 0.95). This manifests in a minimum momentum value for each angular bin.

	electron beam E = 10.	.000 GeV		
eta = -4.000,	ThetaE (WRT +z) = 3.105	$E(Q2=1) = 74.55 \Rightarrow y(Q2=1) = -6.453$	$E(y=0.95) = 0.500 \Rightarrow Q2(y=0.95) = 0.007,$	Min e- momentum = 74.55 (unphysical)
eta = -3.500,	ThetaE (WRT $+z$) = 3.081	$E(Q2=1) = 27.44 \Rightarrow y(Q2=1) = -1.742$	$E(y=0.95) = 0.500 \Rightarrow Q2(y=0.95) = 0.018,$	Min e- momentum = 27.44 (unphysical)
eta = -3.000,	ThetaE (WRT $+z$) = 3.042	E(Q2=1) = 10.11 => y(Q2=1) = -0.009	E(y=0.95) = 0.501 => Q2(y=0.95) = 0.050,	Min e- momentum = 10.11 (unphysical)
eta = -2.500,	ThetaE (WRT $+z$) = 2.978	E(Q2=1) = 3.735 => y(Q2=1) = 0.629,	E(y=0.95) = 0.503 => Q2(y=0.95) = 0.135,	Min e- momentum = 3.735
eta = -2.000,	ThetaE (WRT $+z$) = 2.873	$E(Q2=1) = 1.390 \Rightarrow y(Q2=1) = 0.864,$	$E(y=0.95) = 0.509 \Rightarrow Q2(y=0.95) = 0.366,$	Min e- momentum = 1.390
eta = -1.500,	ThetaE (WRT $+z$) = 2.703	$E(Q2=1) = 0.527 \Rightarrow y(Q2=1) = 0.950,$	E(y=0.95) = 0.525 => Q2(y=0.95) = 0.996,	Min e- momentum = 0.527
eta = -1.000,	ThetaE (WRT $+z$) = 2.437	$E(Q2=1) = 0.210 \Rightarrow y(Q2=1) = 0.982,$	E(y=0.95) = 0.568 => Q2(y=0.95) = 2.707,	Min e- momentum = 0.568
eta = -0.500,	ThetaE (WRT $+z$) = 2.051	E(Q2=1) = 0.093 => y(Q2=1) = 0.993,	E(y=0.95) = 0.684 => Q2(y=0.95) = 7.358,	Min e- momentum = 0.684
eta = 0.000,	ThetaE (WRT $+z$) = 1.571	E(Q2=1) = 0.050 => y(Q2=1) = 0.998,	E(y=0.95) = 1.000 => Q2(y=0.95) = 20.000,	Min e- momentum = 1.000
eta = 0.500,	ThetaE (WRT $+z$) = 1.090	E(Q2=1) = 0.034 => y(Q2=1) = 0.999,	E(y=0.95) = 1.859 => Q2(y=0.95) = 54.366,	Min e- momentum = 1.859
eta = 1.000,	ThetaE (WRT $+z$) = 0.705	E(Q2=1) = 0.028 => y(Q2=1) = 1.000,	E(y=0.95) = 4.195 => Q2(y=0.95) = 147.781,	Min e- momentum = 4.195
eta = 1.500,	ThetaE (WRT $+z$) = 0.439	E(Q2=1) = 0.026 => y(Q2=1) = 1.000,	E(y=0.95) = 10.54 => Q2(y=0.95) = 401.711,	Min e- momentum = 10.54
eta = 2.000,	ThetaE (WRT $+z$) = 0.269	E(Q2=1) = 0.025 => y(Q2=1) = 1.000,	E(y=0.95) = 27.80 => Q2(y=0.95) = 1091.96,	Min e- momentum = 27.80
eta = 2.500,	ThetaE (WRT $+z$) = 0.164	E(Q2=1) = 0.025 => y(Q2=1) = 1.000,	E(y=0.95) = 74.71 => Q2(y=0.95) = 2968.26,	Min e- momentum = 74.71
eta = 3.000,	ThetaE (WRT +z) = 0.099	E(Q2=1) = 0.025 => y(Q2=1) = 1.000,	E(y=0.95) = 202.21=> Q2(y=0.95) = 8068.58,	Min e- momentum = 202.21
eta = 3.500,	ThetaE (WRT $+z$) = 0.060	E(Q2=1) = 0.025 => y(Q2=1) = 1.000,	E(y=0.95) = 548.82=> Q2(y=0.95) = 21932.67	Min e- momentum = 548.82,

$$y = 1 - \frac{E_{e'} \left(1 - \cos\theta\right)}{2E_e}$$

$$Q^2 = 4E_e E_{e'} \cos^2 \frac{\theta}{2}$$

7/12/22

Also, at a given angle, we will only consider momentum values that satisfy both some minimum Q² requirement (>1 GeV²) and maximum y requirement (< 0.95). This manifests in a minimum momentum value for each angular bin.

	electron beam E = 10.	000 GeV		
eta = -4.000,	ThetaE (WRT +z) = 3.105	E(Q2=1) = 74.55 => y(Q2=1) = -6.453	$E(y=0.95) = 0.500 \Rightarrow Q2(y=0.95) = 0.007,$	Min e- momentum = 74.55 (unphysical
eta = -3.500,	ThetaE (WRT $+z$) = 3.081	$E(Q2=1) = 27.44 \Rightarrow y(Q2=1) = -1.742$	E(y=0.95) = 0.500 => Q2(y=0.95) = 0.018,	Min e- momentum = 27.44 (unphysical
eta = -3.000,	ThetaE (WRT $+z$) = 3.042	E(Q2=1) = 10.11 => y(Q2=1) = -0.009	E(y=0.95) = 0.501 => Q2(y=0.95) = 0.050,	Min e- momentum = 10.11 (unphysical
eta = -2.500,	ThetaE (WRT $+z$) = 2.978	$E(Q2=1) = 3.735 \Rightarrow y(Q2=1) = 0.629,$	E(y=0.95) = 0.503 => Q2(y=0.95) = 0.135,	Min e- momentum = 3.735
eta = -2.000,	ThetaE (WRT $+z$) = 2.873	$E(Q2=1) = 1.390 \Rightarrow y(Q2=1) = 0.864,$	E(y=0.95) = 0.509 => Q2(y=0.95) = 0.366,	Min e- momentum = 1.390
eta = -1.500,	ThetaE (WRT +z) = 2.703	$E(Q2=1) = 0.527 \Rightarrow y(Q2=1) = 0.950,$	E(y=0.95) = 0.525 => Q2(y=0.95) = 0.996,	Min e- momentum = 0.527
eta = -1.000,	ThetaE (WRT +z) = 2.437	E(Q2=1) = 0.210 => y(Q2=1) = 0.982,	E(y=0.95) = 0.568 => Q2(y=0.95) = 2.707,	Min e- momentum = 0.568
eta = -0.500,	ThetaE (WRT $+z$) = 2.051	$E(Q2=1) = 0.093 \Rightarrow y(Q2=1) = 0.993,$	E(y=0.95) = 0.684 => Q2(y=0.95) = 7.358,	Min e- momentum = 0.684
eta = 0.000,	ThetaE (WRT $+z$) = 1.571	$E(Q2=1) = 0.050 \Rightarrow y(Q2=1) = 0.998,$	E(y=0.95) = 1.000 => Q2(y=0.95) = 20.000,	Min e- momentum = 1.000
eta = 0.500,	ThetaE (WRT $+z$) = 1.090	$E(Q2=1) = 0.034 \Rightarrow y(Q2=1) = 0.999,$	E(y=0.95) = 1.859 => Q2(y=0.95) = 54.366,	Min e- momentum = 1.859
eta = 1.000,	ThetaE (WRT $+z$) = 0.705	$E(Q2=1) = 0.028 \Rightarrow y(Q2=1) = 1.000,$	E(y=0.95) = 4.195 => Q2(y=0.95) = 147.781,	Min e- momentum = 4.195
eta = 1.500,	ThetaE (WRT $+z$) = 0.439	$E(Q2=1) = 0.026 \Rightarrow y(Q2=1) = 1.000,$	E(y=0.95) = 10.54 => Q2(y=0.95) = 401.711,	Min e- momentum = 10.54
eta = 2.000,	ThetaE (WRT $+z$) = 0.269	$E(Q2=1) = 0.025 \Rightarrow y(Q2=1) = 1.000,$	E(y=0.95) = 27.80 => Q2(y=0.95) = 1091.96,	Min e- momentum = 27.80
eta = 2.500,	ThetaE (WRT $+z$) = 0.164	$E(Q2=1) = 0.025 \Rightarrow y(Q2=1) = 1.000,$	E(y=0.95) = 74.71 => Q2(y=0.95) = 2968.26,	Min e- momentum = 74.71
eta = 3.000,	ThetaE (WRT +z) = 0.099	$E(Q2=1) = 0.025 \Rightarrow y(Q2=1) = 1.000,$	E(y=0.95) = 202.21=> Q2(y=0.95) = 8068.58,	Min e- momentum = 202.21
eta = 3.500,	ThetaE (WRT $+z$) = 0.060	$E(Q2=1) = 0.025 \Rightarrow y(Q2=1) = 1.000,$	E(y=0.95) = 548.82=> Q2(y=0.95) = 21932.67	Min e- momentum = 548.82,

Q² > 1 GeV² cut sets minimum momentum for scattering angles above line, while y < 0.95 set limits for those below line

$$y = 1 - \frac{E_{e'} \left(1 - \cos\theta\right)}{2E_e}$$

$$Q^2 = 4E_e E_{e'} \cos^2 \frac{\theta}{2}$$

7/12/22

Focus on negative pseudo-rapidity region

Focus on negative pseudo-rapidity region

ECal and DIRC expected performance

7/12/22

Final pion-to-electron ratio with detector cuts

Towards full detector simulation – CORE implementation in *Fun4All*

Towards full detector simulation – CORE implementation in Fun4All

- Code is available on Github in <u>this repository</u>.
- The <u>README</u> explains how to download and run the simulation.
- Simulation and analysis examples for both <u>tracking</u> and <u>electromagnetic calorimeter</u> (including the results shown on the following slides) can be found in the same repository.

Single particle simulation with backward ECal (EEMC)

Tails in electron distribution come from detector edges

Momentum = 5.0 GeV/c

Momentum = 5.0 GeV/c

35(1.2 -400 -300 - 350 25(-300 д^{0.} Ш Electron E/p -250 Dion 0.6 20(_200 Neg. 15(150 0.4 0. 10(100 0.2 0. 50 50 -2 -3.5 -3 -2.5 -1.5 -0.5 0 -3.5 -3 -2.5 -2 -1.5 -0.5 0 -4 -1 -4 -1 True Electron η True Neg. Pion η

Calculate cut efficiency for stable region

Conclusions

- Parity-violating physics at the EIC require accurate measurements of small asymmetries. These measurements provide a stringent requirement on the scattered electron purity.
- Parameterizations of the detector responses suggests CORE will be able to meet these requirements.

Full simulations are needed. A working version of the CORE detector has been implemented in the *Fun4All* framework. The implementation has working tracking, time-of-flight and calorimeter detectors. It currently only contains geometry descriptions for some other detector – such as the DIRC. In addition, no support structures have been included.