

Superconducting Tunnel Junction (STJ) Radiation Detectors

Stephan Friedrich, LLNL

Part 1: What are STJs? Part 2: The BeEST Sterile Neutrino Search

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-811064

Refresher: Si and Ge Semiconductor Detectors

Signal: $Q_S = eN$ with $N = E/\varepsilon$ and $\varepsilon \approx 3E_{band gap}$ Noise: $Q_N = e\sqrt{FN}$ $\Rightarrow S/N: Q_S/Q_N = \sqrt{N/F} \propto 1/\sqrt{E_{band gap}}$

- 1) Energy resolution is proportional to $1/\sqrt{band gap}$
- 2) Cooling is required to reduce thermal excitations N_{thermal}.

Semiconducting vs Superconducting Detectors

Signal:
$$Q_s = eN$$
 with $N = E/\varepsilon$ and $\varepsilon \approx 3E_{band gap}$
Noise: $Q_N = e\sqrt{FN}$
 \Rightarrow S/N: $Q_S/Q_N = \sqrt{N/F} \propto 1/\sqrt{E_{band gap}}$

Signal: $Q_s = eN$ with $N = E/\varepsilon$ and $\varepsilon \approx 1.7\Delta$ Noise: $Q_N = e\sqrt{FN}$ 1000x smaller gap \Rightarrow ~30x higher resolution
(and 1000x lower T needed)

Superconducting Tunnel Junctions (STJs)

STJ Cross Section

STJ Band Diagram

Small ~1 meV energy gap Δ ⇒ High resolution: ~few eV FWHM
 Short ~µs charge lifetime ⇒ High speed: >1000 counts/s

Statistical Noise in STJ Detectors

Charge Generation

Due to Backtunneling

Due to Reverse Tunneling

F = 0.2

Refresher: Electronic Noise in Si and Ge Detectors

Current and Voltage Noise

Noise vs Frequency

Electronic Noise in STJ Detectors

 $\left(\frac{2}{3g_m}\right)$

Current and Voltage Noise

Leakage Current (in Detector and FET)

 \Rightarrow Current (shot) noise $i_n = \sqrt{2eI_{leak}}$

Thermal Noise (in Resistors and FET)

 \Rightarrow Voltage (Johnson) noise of FET $e_{FET} = \sqrt{4k_BT}$

$$\Rightarrow \text{Equivalent current noise } \frac{e_n}{|Z_{detector}|} \approx \left| \frac{e_n}{R_{STJ}} \right| \propto \frac{e_n}{R_{STJ}}$$

FET noise and STJ detector <u>resistance</u> set electronic noise.

Noise vs Frequency

Measuring Statistical and Electronic Noise

Ge Detectors

STJ Detectors

• Statistical noise $\propto \sqrt{E}$ • Electronic noise is constant with E • Inhomogeneity causes broadening $\propto E$

STJ Fabrication

Few Pixels

(208µm)² pixels

Our STJs are fabricated by photolithography at STAR Cryo in Santa Fe.

Automated STJ Cooling to 0.1K

1990s: Liquid N₂ and He pre-cooling Single-stage ADR

2010s: Pulse-tube pre-cooling ("dry") Two-stage ADR

 Close heat switch
 Apply B (lower entropy S)
 Open heat switch (decouple T)
 Reduce B slowly (keeping entropy constant ⇒ reduce T)

Adiabatic Demagnetization Refrigerators (ADRs) are compact, reliable, automated and commercially available.

STJ Operation

Current-Voltage I(V) Curve (Textbook Version)

I(V) Curve (Real Life)

I. Giaever (1960)

Cool to $\leq 0.1T_{c}$ to suppress thermal current.

Apply B to suppress dc Josephson current.

STJ Electronics

Readout Requirements

- Low noise ($e_n \le 1 \text{ nV/VHz}$)
- Stable biasing (to $\pm \text{few } \mu V$)
- Voltage bias (dc load line <100 Ω)

Computer-Controlled Preamplifier (XIA)

STJ vs. Si Detectors

High resolution is important at low energies where lines are closely spaced.

STJ Performance: Resolution and Linearity

Pulsed 355 nm (3.5eV) laser at 5,000 Hz

- \Rightarrow Comb of peaks at integer multiples of 3.5 eV
- \Rightarrow Energy resolution between ~1.5 and ~2.5 eV FWHM
- \Rightarrow Only quadratic non-linearity
- Calibration accuracy of order ±1 meV in 1 hour

STJ Performance: Speed

Nb-STJs ($\tau_{decay} \approx \text{few } \mu s$)

Ta-STJs ($\tau_{decay} \approx$ few 10 µs)

STJ Signal:

 Single exponential decay constant

DSP pulse processing:

- Trapezoidal filter
- Pile-up rejection

STJs detectors can be operated at rates well above 1000 counts/s per pixel.

Part II: The BeEST Sterile Neutrino Search

What is Dark Matter?

- What is 85% of the mass in the Universe?
- Why the matter-antimatter asymmetry?

Do Right-Handed (Sterile) Neutrinos Exist?

- Why are all neutrinos left-handed?
- Why do neutrinos have mass?

How to Find Something that

1) Doesn't emit light

- 2) Doesn't absorb light
- 3) Doesn't interact (except through its mass)?

How to Find Something that

1) Doesn't emit light

- 2) Doesn't absorb light
- 3) Doesn't interact (except through its mass)?

From the recoil it causes!

 $|p_{Li-7}| = |p_v|$

(Missing momentum experiment.)

A Sterile Neutrino Search with STJ Detectors

at TRIUMF	Superconducting Detector from LLNL			
⁷ Be				

Implant ⁷Be into STJ detectors.

 $\tau_{1/2}$ = 53 days, Q = 861 keV

Beryllium-7 Electron Capture in STJ Detectors

at	TRI	UN	ЛF
⁷ B	е		

Implant ⁷Be

Detect ⁷Be Decay at LLNL

⁷Be + e- \rightarrow ⁷Li + v_{e-} with v_{e-}= $\Sigma |U_{ea}|^2 v_{active}$

Measure electron capture decay of ⁷Be to ⁷Li.

2-body decay \Rightarrow Monochromatic recoil (in principle)

<u>Be</u>-7 <u>Electron Capture in STJs: The BeEST Experiment</u>

Detect ⁷Be Decay Implant ⁷Be at TRIUMF at LLNL ⁷Be **STJ** $E_{7_{Li} recoil} = \frac{Q^2 - m_v^2 c^4}{2(Q - m_{7_{Li}} c^2)} \rightarrow 56.826(9) eV for m_v \approx 0$ Si ⁷Be + e- \rightarrow ⁷Li + v_o with $v_{e_{z}} = \Sigma |U_{e_{z}}|^{2} v_{active} + |U_{e_{z}}|^{2} v_{sterile}$

Heavy sterile neutrinos would change ⁷Li recoil energy.

Look for new peaks in recoil spectrum.

The BeEST Sterile Neutrino Search

Calibrate STJ with pulsed laser.

Four peaks due to K- and L- capture into ⁷Li ground and excited state

BEES

- 4 primary peaks
 - 2 x K-capture, 2x L-capture
 - to ⁷Li ground state and to ⁷Li*
- 4 high-energy tails – Shake-off effects
- 2 low-energy tails – (Partial) Auger e- energy loss
- 1 broad background
 478 keV γ's in substate

L/K Ratio = 0.070(7)

PRL 125, 032701 (2020)

Data with Hypothetical Sterile v Signal

BreEs

Exclusion Plot

PRL 126, 021803 (2021)

The BeEST in Context

Summary of Sterile Neutrino Searches (2021)

Tabletop BeEST Experiment

Current Work: New Materials and More Pixels

STJs from Different Materials

Currently Taking Data with Ta-STJ Array

Separate BSM physics from material effects.

Stay tuned!

Summary: STJs and the BeEST

Superconducting Tunnel Junctions

- High energy resolution: ~1 5 eV
- High speed: >1000 counts/s per pixel
- No quenching

Beryllium-7 Electron Capture in STJs

- High-sensitivity recoil measurement
- Exclusion to $|U_{e4}|^2$ to ~10⁻⁴ with 1 pixel
- Currently scaling to arrays

Stephan Friedrich

G.-B. Kim, I. Kim, A. Samanta, V. Lordi

Robin Cantor

Ad Hall

 \Rightarrow BeEST Experiment \Rightarrow DFT Simulations

 \Rightarrow TEM Imaging

Kyle Leach

S. Fretwell, C. Bray, A. Marino, C. Harris

Chris Ruiz A. Lennarz, P. Machule, D. McKeen

 \Rightarrow ⁷Be Implantation \Rightarrow Cosmology \gtrsim TRIUMF

Xavier Mougeot

Jose-Paolo Santos

Thank You!

 \Rightarrow EC Decay Simulations

Bill Warburton J. Harris **STJ Electronics**

Cynthia Volkert H. Hadenfeldt, J. Arlt

 \Rightarrow Shake-up/off Simulations

