The Cryotron Reborn: Superconducting-Nanostrip-Based Electronics

Karl K. Berggren

Professor of Electrical Engineering at Massachusetts Institute of Technology

berggren@mit.edu

https://www.rle.mit.edu/qnn/

11/30/22 - Prof. K.K.Berggren

What do HEP Detectors Need that Superconducting Nanowires can Provide?

Hybrid superconducting detector platform

Synopsys, Argonne National Lab

Hybrid superconducting detector platform

Synopsys, Argonne National Lab

HEP Needs

- Operation in low-temperature environments
- Operation in high-radiation environments
- Operation in strong magnetic fields
- Basic digital functions (counting, shifting, mux/demux)
- Basic analog functions (amplification, threshold detection)
- Integration with superconducting detectors
- Integration with CMOS

What can be sacrificed?

- Ultra-high integration scale (warmer CMOS can be used, outside of the B field)
- Ultra-high speeds (need to keep up with data rate, not CMOS clock rate)

Open • Submitted: 08 February 2012 • Accepted: 16 July 2012 • Published Online: 24 July 2012

Efficient single particle detection with a superconducting nanowire

Unconventional Applications of Superconducting Nanowire Single Photon Detectors

by 2 Tomas Polakovic ^{1,2} \boxdot , 2 Whitney Armstrong ¹ \boxdot , 2 Goran Karapetrov ^{2,3} \boxdot , 2 Zein-Eddine Meziani ¹ \boxdot and 2 Valentine Novosad ^{1,4,*} \boxdot

¹ Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

- ² Department of Physics, Drexel University, Philadelphia, PA 19104, USA
- ³ Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
- ⁴ Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- * Author to whom correspondence should be addressed.

Nanomaterials 2020, 10(6), 1198; https://doi.org/10.3390/nano10061198

Received: 18 May 2020 / Revised: 7 June 2020 / Accepted: 8 June 2020 / Published: 19 June 2020

(This article belongs to the Special Issue Superconductivity in Nanoscaled Systems)

Polakovic 2020

11/

Figure 4. Approximate thermal hotspot radius r_{hs} as a function of α -particle kinetic energy in NbN film with $T_C = 8$ K and $W_{0.76}$ Si_{0.24} film with $T_C = 3.35$ K. Both films are assumed to be held at $T_0 = \frac{T_C}{2}$.

Operation in Strong Magnetic Field

Superconducting nanowires as high-rate photon detectors in strong magnetic fields

T. Polakovic^{a,d}, W.R. Armstrong^a, V. Yefremenko^b, J.E. Pearson^c, K. Hafidi^a, G. Karapetrov^{d,e}, Z.-E. Meziani^a, V. Novosad^{c,*}

10

Multifunctional Superconducting Nanowire Quantum Sensors

Benjamin J. Lawrie[®],^{1,*} Claire E. Marvinney[®],^{1,†} Yun-Yi Pai[®],¹ Matthew A. Feldman,¹ Jie Zhang,¹ Aaron J. Miller,² Chengyun Hua[®],¹ Eugene Dumitrescu[®],³ and Gábor B. Halász¹

¹Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA

²Quantum Opus LLC, Novi, Michigan 48375, USA

³ Computational Science and Engineering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA

(Received 18 March 2021; revised 19 September 2021; accepted 9 November 2021; published 23 December 2021)

Benjamin J. Lawrie, et. al., "Multifunctional Superconducting Nanowire Quantum Sensors," Phys. Rev. Applied 16, 064059 (2021)

11/30/22 - Prof. K.K.Berggren

Radiation Hard

Radiation Environment

Prinzie, J., Simanjuntak, F.M., Leroux, P. *et al.* Low-power electronic technologies for harsh radiation environments. *Nat Electron* 4, 243–253 (2021). https://doi-org.libproxy.mit.edu/10.1038/s419 28-021-00562-4

11/30/22 - Prof. K.K.Berggren

Radiation Environment

Prinzie, J., Simanjuntak, F.M., Leroux, P. *et al.* Low-power electronic technologies for harsh radiation environments. *Nat Electron* 4, 243–253 (2021). https://doi-org.libproxy.mit.edu/10.1038/s419 28-021-00562-4

11/30/22 - Prof. K.K.Berggren

Displacement damage

Prinzie, J., Simanjuntak, F.M., Leroux, P. et al. Low-power electronic technologies for harsh radiation environments. *Nat Electron* 4, 243–253 (2021). https://doi-org.libproxy.mit.edu/10.1038/s419

https://doi-org.libproxy.mit.edu/10.1038/s419 28-021-00562-4 15

Radiation Tolerance of Niobium Nitride

- Previous NbN radiation study¹ with fast neutron fluence of **10²³** m⁻²
 - In low orbit (297 km altitude²), fast neutron flux of 3.4 x 10^8 m⁻²day⁻¹
 - \circ T_c decreased by 5.7%
 - $\circ \ \varrho$ increased by 6.3%
 - \circ J_c did not change

¹Journal of Applied Physics **64**, 1301 (1988); <u>https://doi.org/10.1063/1.341850</u> ²Nucl. Tracks Radiat. Meas. **17**, 87-91 (1990)

Superconducting Nanowire Device

Initial Bias Condition

Initial Bias Condition

Trigger Event

Hot Spot Creation and Growth

Hot Spot Saturation

Collapse and Reset

Superconducting Nanowire in a Circuit

Calotron: Broom and Rhoderick 1960 Br. J. Appl. Phys 11 292

Thermal propagation of a normal region in a thin superconducting film and its application to a new type of bistable element

by R. F. BROOM, B.Sc., and E. H. RHODERICK, M.A., Ph.D., Services Electronics Research Laboratory, Baldock, Hertfordshire

[Paper first received 12 January, and in final form 13 February, 1960]

• Dual device to a DIAC

Bestiary of Nanowire Devices

constriction

Bestiary of Nanowire Devices

What SNSPDs tell us about Nanowire Logic

- Infrared efficiency for single photons up to 10 µm: single photon sensitivity ⇒ Narrow grey zone [Verma et al., APL Photonics, 2021]
- Jitter ≈ 3 ps [Korzh et. al. 2020]
 - Reset time runs into thermal limits at ≈ 1.5 ns
 - Suggestions in MgB₂ it can be as low as 150 ps [Cherednichenko et al. SUST 2021]
- Dark-count rate (~ I per day) : consistent with cosmic rays [Chiles and Charaev, unpublished result]
- Convenient fabrication, shielding, amplification, temperature

Bestiary of Nanowire Devices

Bestiary of Nanowire Devices

Thermo-Electric Switch

Thermal Cryotron: heater (h)Tron

Fabrication process for making multilayer hTron devices

1 Define Au marks (lift-off).

2 Define the nanowire on NbN film (RIE).

Define the heater on top of the nanowire (lift-off).

"Multilayered Heater Nanocryotron: A Superconducting-Nanowire-Based Thermal Switch" Phys. Rev. Applied 14, 054011 – Published 6 November 2020

hTron Switching Characteristics

Operation of an hTron: Translate Joule heating to

temperature

The cryotron: magnetic suppression

1956, Dudley Buck at MIT
Gate induces magnetic field
Suppresses channel Ic

11/30/22 - Prof. K.K.Berggren

Buck, D. (1956). The Cryotron - A Superconductive Computer Component. Proceedings of the IRE, 44(4), 482–493. doi:10.1109/JRPROC.1956.274

38

"A cryotron multi-level logic and memory circuit"

FIGURE 1-Block diagram of cryotron logic and memory circuit.

FIGURE 3—Output waveforms at 200 kc; 5 µsec word time. Top to bottom: bit 1, bit 2, bit 3, bit 4, and counter test output. Vertical scale: 0.5 mv/em.

M. Cohen, A. Slade and R. Varteresian, "A cryotron multi-level logic and memory circuit," *1964 IEEE International Solid-State Circuits Conference. Digest of Technical Papers*, Philadelphia, PA, USA, 1964, pp. 102-103, doi: 10.1109/ISSCC.1964.1157547.

Bestiary of Nanowire Devices

Pulse Discriminator for SNSPD Readout

M Ejrnaes et al 2011 Supercond. Sci. Technol. 24 035018

11/30/22 - Prof. K.K.Berggren

nTron geometry

A. N. McCaughan and K. K. Berggren, <u>Nano Letters</u> **14**(10), 5748 (2014) 11/30/22 - Prof. K.K.Berggren

11/30/22 - Prof. K.K.Berggren

nanowire Cryotron Characteristics

Channel switching current I_c vs gate input current (write port current) for nTron reference device

11/30/22 - Prof. K.K.Berggren

Using Nanowire Electronics

Logic Circuits

Superconducting nanowire electronics

Non-volatile memory

B. A. Butters et al. SUST 34 2021

O. Medeiros et al. ASC 22 SNSPD: Physics, Measurement, Readout, **Applications**

A. Buzzi et al. WOLTE 22

Shift-register

R. A. Foster et al. WOLTE 22

nTron Amplifier Example for SNSPDs

Zheng, K., Zhao, Q. Y., et al. "A Superconducting Binary Encoder with Multigate Nanowire Cryotrons." *Nano letters*, *20*(5), (2020) 3553-3559. (Supporting Information)

51

Tron-CMOS interfacing demo

Driving room-temp MOSFET and LED with nTron

MOSFET is driven by the nTron gate pulse FET V_{th} = 2 V. LED turns on, when V_{ch} > V_{th}

SNSPD + 2-digit counter

Nanowire Memory Element (nMem)

Superconducting Memories

Superconducting nanowire memory

Work initiated under IARPA C3 Program Butters, Brenden A., et al. "A scalable superconducting nanowire memory cell and preliminary array test." *Superconductor Science and Technology* 34.3 (2021)

Vortex-Transitional (VT) memory cells

Persistent Current

Wikimedia Commons, DRAM Cell Structure (Model of Single Circuit Cell), Tosaka (2008)

11/30/22 - Prof. K.K.Berggren

Problems with non-destructive read

- yTron makes sneak currents hard to avoid
- Forming an array requires addressing circuitry
 - Increases cell size
 - Increases power dissipation
 - Reduces speed

additional readout circuitry

Destructive nanowire memory

Destructive-read memory allows for simplified array geometry.

11/30/22 - Prof. K.K.Berggren

Writing

Switching Distributions

11/30/22 - Prof. K.K.Berggren

preliminary array test." Superconductor Science and Technology (2021)

Comparison to existing superconducting memories

Table CEQIP-6Superconductor Memory Status

		1	Bit Cell Area	Latency [ns]		Energy [fJ]		Static	
Name	References	RAN	[µm ²]	Read	Write	Read	Write	Power	Bits
SR: shift register, ac-biased	[121]		300 (15×20)						202 280
SR: shift register	[339]			0.02	0.02	0.1	0.1	0.2 mW	64
VTM: vortex transition memory	[203 (VT2)]	\checkmark	99 (9×11)	0.10	0.10	100	100		72
JJ-RAM: Josephson junction RAM	[199]	\checkmark	484 (22×22)					4.5 mW	4096
RQL-RAM: reciprocal quantum logic	[200]	\checkmark	1452 (33×44)						1024
PRAM: PTL-RAM	[201, 202]	\checkmark	1452 (33×44)						512
SHE-MTJ : Spin Hall effect magnetic tunnel junction	[239]	\checkmark	2470 (38×65)	0.10	2	1000	8000		16
SNM: superconducting nanowire memory	[107]	\checkmark	26.5 (5×5.3)	0.10	3	10	10		8
Hybrid: JJ-CMOS	[659]	\checkmark		2~4	2~4	100	100		65 536

Holmes, D. Scott. "Cryogenic Electronics And Quantum Information Processing." 2022 IEEE International Roadmap for Devices and Systems Outbriefs. IEEE, 2022.

11/30/22 - Prof. K.K.Berggren

Off-Chip Drivers

nTron Amplifier Example for SNSPDs

A. N. McCaughan and K. K. Berggren, Nano Letters 14(10), 5748 (2014) 11/30/22 - Prof. K.K.Berggren Zheng, K., Zhao, Q. Y., et al. "A Superconducting Binary Encoder with Multigate Nanowire Cryotrons." *Nano letters*, *20*(5), (2020) 3553-3559. (Supporting Information)

The NIST Thermal Switch (hTron)

11/30/22 - Prof. K.K.Berggren

McCaughan, A.N., *et al.* "A superconducting thermal switch with ultrahigh impedance for interfacing superconductors to semiconductors." *Nat Electron* 2, 451–456 (2019). 68

Interface between RSFQ & Semiconductors

chip

scope

nTron chip

Experimental demonstration

 $\textbf{SFQ} {\rightarrow} n\textbf{Tron} {\rightarrow} \textbf{HEMT}$

Josephson junction \rightarrow nanowire \rightarrow transistor

11/30/22 - Prof. K.K.Berggren

SFQ chip

Collaborate with Thomas Ortlepp from CiS Research Institute for Microsensor Systems GmbH

Encoders A major need for superconducting electronics is the ability to do robust multiplexing onto and off chip.

11/30/22 - Prof. K.K.Berggren

Zheng, K., Zhao, Q. Y., et al. "A Superconducting Binary Encoder with Multigate Nanowire Cryotrons." *Nano letters*, *20*(5), (2020) 3553-3559.

Neuromorphic Circuits
Application to Neuromorphic Computing

- Neuromorphic circuits are likely to require multiple modalities (e.g. flux, light, charge)
- Natural fit to spiking characteristic of physical neurons

Emily Toomey Grad student

Ken Segall, Colgate

Nancy Lynch, MIT

Applications to neuromorphic computing

Nanowire neuron: energy performance

- Projected to have a figure of merit 4 orders of magnitude better than current CMOS architectures
- Additional advantage of no static power dissipation in the interconnects
- JJ neuron projected to have ~ 10^{15} SOPS/Watt

11/30/22 - Prof. K.K.Berggren

Microwave Electronics

Slow-wave transmission line

In collaboration with **Daniel Santavicca (UNF)**

Extreme footprint reduction

@ 12 GHz - λ = 1 cm

Nanowire Microstrip Transmission Lines

footprint reduction

Fauzi, Azahar, and Zairi Ismael Rizman. *Journal of Engineering Science and Technology* 11.3 (2016): 431-442.

12 GHz microstrip directional coupler (on RO6010)

- backward coupling
- Z₀ = 50 Ω

(a) 5 GHz - λ = 1 mm

Colangelo, Marco, et al. "Compact and Tunable Forward Coupler Based on High-Impedance Superconducting Nanowires." *Physical Review Applied* 15.2 (2021): 024064.

5 GHz microstrip directional

coupler

- forward coupling
- Z₀ = 1446 Ω

Extreme footprint reduction

@ 12 GHz - λ = 1 cm

Nanowire Microstrip Transmission Lines

footprint reduction

Fauzi, Azahar, and Zairi Ismael Rizman. *Journal of Engineering Science and Technology* 11.3 (2016): 431-442.

12 GHz microstrip directional coupler (on RO6010)

- backward coupling
- Z₀ = 50 Ω

@ 5 GHz - λ = 1 mm

Colangelo, Marco, et al. "Compact and Tunable Forward Coupler Based on High-Impedance Superconducting Nanowires." *Physical Review Applied* 15.2 (2021): 024064.

5 GHz microstrip directional

coupler

- forward coupling
- Z₀ = 1446 Ω

Nanowire coupler (experiment)

Colangelo, M., et al. 2021. Physical Review Applied 15 (2): 024064.

In collaboration with **Daniel Santavicca (UNF)** and **Joshua Bienfang (NIST)**⁸⁰

High-Temp Operation

Potential Future High-Temperature Operation

Charaev et al. 2022, arXiv:2208.05674 [cond-mat.supr-con]

FIG. 1. High- T_c superconducting nanowires. a, Schematic of the BSCCO single-photon detector: A relatively thin flake of BSCCO is covered by a much thicker flake of hBN and transferred onto ultra-flat gold contacts. SNW region is defined by a helium beam exposure. b, Optical photograph of the BSCCO device. Scale bar is 3 μ m. Inset: Example of the SEM image of the BSCCO SNW produced by the He⁺ beam exposure (similar but not identical to that from the photograph). The scale bar is 2 μ m. c, Schematic of the LSCO-LCO single-photon detector: High- T_c two-dimensional superconductor is formed at the interface between the 5 UC of the LCO insulator and the 5 UC of the LSCO metal. 10 nm of chromium-gold was used for contact leads. d, An SEM image of a typical LSCO-LCO SNW device. The scale bar is 2 μ m. e-f, Examples of the R(T)dependencies for BSCCO (e) and LSCO-LCO (f) flake, film and SNWs. g, Typical *I-V* curve for the BSCCO SNWs measured at T = 3.7 K. h, Typical *I-V* curves of the LSCO-LCO SNWs measured at T = 3.7 K before and after He⁺ ion exposure.

FIG. 2. Photovoltage generation in cuprate NW detectors. a, The simplified circuit diagram used to measure the photoresponse of the LSCO-LCO SNW detector. The SNW is current-biased by an isolated voltage source connected to the DC port of the bias tee (dashed rectangle) through a resistor, R_0 . Incident radiation triggers a voltage spike generating a short pulse that propagates through the AC port of the bias tee to the preamplifier and is read out using an oscilloscope or a photon counter. $L_{\rm on-ch}$ is an on-chip kinetic inductor made out of the LSCO-LCO film. **b**, The simplified circuit diagram used to measure the photoresponse of the BSCCO SNW detector. $R_{\rm sh}$ and $L_{\rm sh}$ are the shunt resistor and the inductor connected in parallel with the BSCCO SNW to prevent it from latching. **c-d**, Photovoltage $V_{\rm ph}$ pulses measured in the LSCO-LCO (c) and BSCCO (d) photodetectors at given T and $\lambda = 1.5 \ \mu m$. The devices are biased to the 95% of their critical current for given T. **e-f**, The $V_{\rm ph}$ pulses measured at given λ for the LSCO-LCO (e) and BSCCO (f) devices at T = 3.7 K and T = 16 K respectively.

11/30/22 - Prof. K.K.Bergc res

Vision & Conclusion

Nanowire-Based electronics

- Low power, high output impedance
- Driving more conventional electronics
- Simple manufacturing

• Where is this going?

- High-temperature (> 20K) electronics for a range of applications (e.g. MgB₂)
- Exploit microwave behaviors
- Applications in neuromorphic, reversible, and other alternative computing paradigms
- Scaling and shunting to speed up devices and lower power

Power Consumption: Rough Analysis

- Switching energy, compare to Silicon
 - *E* ~ *V*²
 - $V \sim 100 \times \text{lower} \rightarrow \text{Energy} \sim 1e4 \text{ lower}$
 - Cooling penalty ~ 1e3
 - ⇒ final advantage ~ 10×
- Switching energy, compare to RSFQ
 - $\circ E = \Phi^2 / 2L$
 - $\circ~\Phi$ ~ 100 × larger and L ~ 100 × larger
 - ⇒ final disadvantage ~ 100×
- V and Φ are scalable, potentially

Remaining Concerns

- Realistic models
- Reproducible fabrication processes
 - Can critical current of a wire be controlled?
- Scalable designs

Likely Applications

- Detector readout, where materials are already suitable for nanowire electronics
- Memories, where JJs struggle with footprint
- Off-chip drivers or memory-line drivers, where JJs struggle with high load impedances and bandwidth requirements are lower
- Radiation-sensitive applications (e.g. space, HEP) where dielectric barriers might degrade

THANKYOU

 Current Funding • Dept. of Energy • DARPA • NSF Past Funding U.S. Air force Office of Scientific Research U.S. Office of Naval Research IARPA, NASA, Skolkovo Inst. of Technology

Many U.S. and international fellowships

Superconductivity Team in QNN Group

Emma Batson (Grad Student)

Reed Foster (MEng Student)

(Grad Student)

Stewart Koppell (Post-Doc)

Matteo Castellani (Grad Student)

Owen Medeiros (Grad Student)

Dip Joti Paul (Grad Student)

Torque Dandachi (MEng Student)

Tony Zhao (Post-Doc)

Graduated/Former

Nathan Abebe Lucy Archer Reza Baghdadi Francesco Bellei **Brenden Butters** Alessandro Buzzi Niccolo Calandri Ilya Charaev Ignacio Estay Forno Andrew Dane Yachin lvry **Glenn Martinez** Adam McCaughan Faraz Najafi Murat Onen Ashley Qu **Kristen Sunter Emily Toomey** Hao-Zhu Wang Qing-Yuan Zhao Di Zhu

Thank you to Lara Ranieri and Rinske Wijtmans for assistance in preparing these slides for presentation

END OF PRESENTATION

berggren@mit.edu @karlberggren