CAEN D Electronic Instrumentation

Readout chains for Fast Detectors

Carlo Tintori (c.tintori@caen.it)

Workshop on Superconducting Electronics and Detectors JLAB, November 29th, 2022

Detector Readout Electronics

Detector Readout:

- In most cases, physics experiments require Energy (= charge or amplitude) and Timing, sometimes Pulse Shape
- Analog electronics (including many ASIC chips) provide a direct measurement of Energy and Time, converted to digital by a (slow) ADC
- Waveform digitizers acquire series of raw samples that must be post-processed (either on-line in FPGA or
 off-line in the software) to extract Energy and Time. Fast detectors => fast ADC (GS/s)

Readout chains

FERS: a scalable readout system

• **FERS:** Front End ASIC + ADC/TDC + Scalable Readout Infrastructure

- Easy integration of new ASICs
- **Scalability:** from single stand alone version for evaluation, to 10k/100k channels with same electronics
- **TDL:** daisy chainable optical link protocol with **data+sync**
- Readout Tree:
 - 1 link = 16 FERS units
 - 1 Concentrator = 8 links = 128 FERS = 8k/16k channels

Multiple Concentrators for unlimited readout...

FERS A5202: 64 ch SiPM readout

- Based on Citiroc ASIC (Weeroc)
- Preamp, Fast shaper + Discrim, Slow shaper + Peak Sensing + Mux ADC
- Programmable gain (up to 600) and shaping time (up to 82.5 ns)
- High Voltage (up to 80 V) for SiPM biasing, with individual adjust
- Acq modes: spectroscopy (PHA), photon counting, timing list mode (ToA + ToT)
- Single photon detection (threshold at 1/3 p.e.)
- Timing resolution = ~0.3 ns RMS

FERS A5203: 64/128 ch TDC (LSB = 3 ps)

- Based on **picoTDC** ASIC (CERN)
- Start-Stop timing resolution = ~5 ps RMS (tested with pulser, 0.8 ns rising edge, 1 Vpp)
- Acq. modes: Common Start, Common Stop, Trg. Matching, Streaming
- Leading/Trailing edge or Leading + ToT
- Extension board (A5256) with fast discriminators (16+1 channels)

FERS A5204: 64 ch SiPM Readout with picoTDC

- Based on Radioroc (Weeroc) and picoTDC (CERN)
- Acq modes: spectroscopy (PHA), photon counting, timing list mode (ToA + ToT)
- Improved timing resolution: 55 ps FWHM on a single p.e.
- Counting rate up to 200 Mcps
- Gain up to 80, Shaping Time up to 1.2 μs

FERS A5205: 64 ch SSD, GEM Readout with picoTDC

- Based on Psiroc (Weeroc) and picoTDC (CERN)
- Same PCB of A5204
- Best suited for Silicon Strip Detectors (SSD), GEM, PIN Diodes
- Gain: from 0.125 mV/fC up to 4 mV/fC
- Shaping time from 20 ns to 3 μs
- Min trigger threshold = 0,5 fC
- Accepts both Positive and Negative inputs
- Dynamic range up to 5 pC with PHA or 100 pC with ToT
- Timing res = 150 ps RMS @ Q_{IN} =4 fC

• Linearized ToT allows for high-resolution energy and ps timing, even at high rate and independent channels!

weeroc

FERS Adapters and Cables

A5250: 2.54 mm Headers

A5253: sparse SiPM cabling

0	<u>_</u>]4				1.1	11			1 11	1	1	1	1	1	ч,	
0	-		-	-			-	20			- 60	-		~		1
				1	1 1 1	- 1		1.00	1.44	1	1.4	1 **	1.	1.	1.	15
	7	-	-	14		-	-	24	- 40	- 11			-			1 *
귀.			-					20	10	. 1	-	-	-	2	2	TEMP
-		-1	-	0 20	21	22	22	24	26	26	27	20	29	20	1	1
	32	33	34	35	36	37	38	39	40	41	42.	43	44	45	46	
16		-	-			-	-		- 10	a 20		-	100	- e		1.
							-	-		10		-	-			1,
100	础			ALC: NO.	ALC: NO.				And so the	Contra la	1	-				
					-	-	-				-	-	-	-	-	1
-						1	-	-			-	-	-	-		
	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	

A5256: 16+1 Fast Discriminators

A5254: OnSemi Array-J Adapter

A5251: Hamamatsu MPPC Adapter

FERS roadmap

Candidates for next FERS: SAMPIC (waveform based TDC)

- Developed at CEA/LAL (Paris)
- Best suited for SiPM, Diamond, MCP, APD
- Switched Capacitor Array (64 samples)
- Up to 10 GS/s sampling rate
- Embedded ADC, ~1 μs Conversion Time
- Ping-pong for low dead-time
- Independent channel readout
- Energy by waveform readout or ToT
- 16/32/64 channel eval board available

SAMPIC							
CHANNELS	16						
SCA DEPTH	64 cells						
SAMPLING RATE	3-8.4 (10.2 for 8 ch) GS/s						
BANDWIDTH	1.6 GHz						
DYNAMIC RANGE	1 V						
ADC RESOLUTION	8-11 bit						
CONVERSION TIME	0.2 μs @ 8 bit 1.6 μs @ 11 bit						
READOUT TIME	25 + (6.2/sample) ns						
SCA NOISE	1.3 mV RMS						
TIME RESOLUTION	< 5 ps RMS						
POWER CONSUMPTION	180 mW (1.8 V supply)						

Candidates for next FERS: Nalu SCA ASICs

- Switched Capacitor Array, up to 2 GS/s
- CAEN-Tech is NALU representative in U.S.

	ASOC V3	AARDVARC V3	AODS V1	HDSOC V1	
CHANNELS	4	4-8	1-4	32/64	
SCA DEPTH	16K	32K	16K	2К	
BANDWIDTH	0.8 GHz	2 GHz	0.5 GHz	1 GHz	
TIMING RESOLUTION	35 ps	4-8 ps	<100 ps	<100 ps	
SAMPLING RATE	2.4-3.6 GS/s	10-14 GS/s	1-2 GS/s	1-2 GS/s	
APPLICATIONS	General Purpose ToF measurement	Accurate timing measurement	High Dynamic range Spare detectors	High Density SiPM readout	
FEATURES	Low cost	High Performance High timing resolution	Variable gain stages Flexible serial interface	Internally configurable triggering schemes	

Other candidates for next FERS

LIROC

VMM3 **SAMPA TEMPOROC**

GET

picoTDC: Timing Resolution with fixed amplitude

Setup: A5203: 64 ch. picoTDC A5256: 8+1 ch. Dual Threshold Fast Discriminator A8110A: Dual Pulse Generator

	Low	Thr	High Thr			
	Mean	RMS	Mean	RMS		
deltaT (start-stop)	4.7 ns	5 ps	4.9 ns	6 ps		
ТоТ	10.6 ns	6.5 ps	10.2 ns	5.5 ps		

Pulses

ToT for Walk correction (CFD) and PHA

Need to find an algorithm that estimates Walk (for CFD timing) and Amplitude (for PHA) from the ToT. Two thresholds (dual ToT) improve resolution at the cost of doubled channels

Walk correction

Waveform Digitizers: new series 2.0

VX2730: 32 ch, 500 MS/s, 14 bit

VX2740/45:

64 ch, 125 MS/s, 16 bit

- Form factors: VME64X, VME64 and Desktop
- Inputs and Dynamic Range:
 - V2740 \rightarrow 2 V, DIFF or SE
 - $_{\odot}$ V2745 \rightarrow 40 mV \div 4 V (Gain: 0 to 40 dB, 0.5 dB steps), DIFF or SE
 - □ V2730 \rightarrow 200 mV ÷ 4 V (Gain: 0 to 26 dB, 1 dB steps, t.b.d.), SE only
- **DC level** adjust (calibrated 16 bit DACs, channel by channel)
- Readout interfaces: 1/10 GbE, USB 3.1, Optical Link (up to ~ 300 MB/s)
- DPP functionalities: PHA, QDC, PSD, CFD, Zero Suppression
- **Open FPGA** to provide flexibility in the pulse processing algorithm
- Embedded Linux ARM

Open FPGA

We provide infrastructure: ADC data flow, data buffering and transfer, slow control You implement your algorithms for data processing, parameter extraction and trigger logic

Sci-Compiler: graphical FPGA programming tool with precompiled modules (logic, filters, ...) **FDK**: FW development kit with VHDL templates, simulation models, signal inspection, etc.

digital CFD: same principle as analog $CFD_{N+1} = f * S_N - S_{N-D}$ f = Fraction, D = delay

COARSE TSTAMP = T_{CLK} * Clock Counter FINE TSTAMP = Interpolation between A and B

Linear Interpol.: $ZC = T_{CLK} * B/(B-A)$ Need 3/5 points on the rising edge to keep the interpolation error low => 5 GS/s for pulses with rising edge = 1ns

Curve fit (e.g. cubic): too complex for on-line FPGA calculation => need waveform readout

ZC correction LUT: increase timing resolution of the linear interpolation. Need algorithm training with real data.

ZC correction LUT

Test with V1730 (500 MS/s, 14 bit)

The linear interpolation between two samples provides the ZC fine time (0 to 2 ns)

Scatter plot: $X = measured \Delta T$, Y = ZC fine time

The interpolation error generates a predictable **pattern**!

A correction LUT can be created to compensate for the interpolation error

Need calibration run with real pulses to fill the LUT

Test Results with V1730: 500 MS/s, 14 bit digitizer

511 keV

Test		Rise Time	Amplitude	ZC corr	Start-Sto	p Resolution	160.00	Rise 1 ns Rise 10 ns BaF2 Self Timing @ 511 keV	Rise 2.5 ns Rise 20 ns BaF2 to BaF2 TOF @ 511 keV	← Rise 5 ns ← LaBr3 Self Timing @	
					RMS	FWHM	10000	1			
	Pulse Generator	1 ns	450 mV	\checkmark	9.5 ps	22 ps	140.00				
	Pulse Generator	5 ns	450 mV	\checkmark	10.1 ps	24 ps	(sc) 100.00	•			
	Pulse Generator	20 ns	450 mV	\checkmark	1.9 ps	4.5 ps	p Sigma				
I	BaF ₂ to BaF ₂	1.3 ns	130 mV	\checkmark	120 ps	280 ps	Start-Sto				
	BaF_2 to BaF_2	1.3 ns	130 mV	×	538 ps	1.3 ns	40.00				
[BaF ₂ to LaBr ₃	1.3/15 ns	130/200 mV	\checkmark	186 ps	437 ps	20.00			9,54	
1	Nal to Nal	20 ns	100 mV	\checkmark	1.02 ns	2.40 ns	0.00	00 1	Amplitude (mV)	1.98	

Single Detector Resolution								
Detector Type	Size	PMT	T _{RES} (FWHM)	Notes				
BaF ₂	1"	H3378-51	200 ps					
LaBr ₃	2"	R6231	~ 400 ps	extrapolated from BaF ₂ to LaBr ₃ Timing				
Nal (Tl)	2"	ETL 9266	1.7 ns					

Reproduction, transfer, distribution of part or all of the contents in this document in any form without prior written permission of CAEN is prohibited

1000.00

Thank you for your attention

Any question/curiosity?