

Cryogenics ASICs at Fermilab

Davide Braga on behalf of the ASIC Department

Growth of IC design over 3 decades

DOE HEP builds and operates among the most difficult and biggest projects with the most complex detectors in science.

These experiments operate in **extreme environments** which require robust custom microelectronics with long-term reliability over decades

Ionizing radiation >1 Grad (1000x higher than outer space) Extreme flux for single event upsets - Collider Experiments (FCC, HL LHC)

Since

1980's

Since

2019

Cryogenic electronics (77K – 100K) - Neutrino experiments (DUNE), Dark matter experiments (Skipper CCDs)

Deep Cryogenic electronics (~ 4K)
Dark matter experiments (Cryogenic detectors e.g. SNSPDs, TES etc.),
Quantum Information Science

Superconducting electronics (~100 mK) - Quantum Information Science (TWPAs, JPAs for ADMX)

New 2022

🗲 Fermilab

Since

2010's

- 19 ASIC designers (2 JA) + 1 open position
- 1 PhD, 1 MS EECS student (Northwestern University)
- 1 scientist, 2 Application Physicist
- 1 test engineer, 1 engineering associate

Started ASIC Design Associate program for post BS, MS or PhD students in 2021 (3-6 months training program)

- 5 interns in 2021 (Carnegie Mellon, U. Toronto, Northwestern University)
- 4 interns (Stanford, Purdue U., U. Toronto, UTA)– HIRING 2 more interns in 2022

Support ASIC design community for extreme environment

- Extreme environment PDK development (collaboration with Foundries and CAD Tool companies)
- Modelling radiation tolerance / cryogenic behavior of the semiconductor process
- Develop SEE mitigation approaches
- Previously 65 nm: up to 1 Grad / 77K
- Current focus:

GF 22 FDX below 4K;

TSMC 28 HPC+ beyond 1 Grad

Relevant expertise

- Radiation hardness techniques and processes
- Fast timing
- Photonics/electronics integration (collaboration with University of Washington)
- Edge Computing
- 3D integration

Cryo CMOS technologies and modeling

CMOS at cryogenic temperature

- Carrier freezeout avoided in modern CMOS processes (<160nm)
- Higher mobility
- Higher Threshold voltage
- Higher subthreshold slope
- at low VDS, the subthreshold region of the MOSFET transfer characteristics exhibits peaks and valleys due to Coulomb Blockade
- Mismatch increases
- Leakage drastically reduces
- Substrate can becomes floating

GF 22FDX Fully Depleted Silicon-on-Insulator

Advantages: Multi-technology platform

LDFET: Asymmetric high voltage transistors: Max Vds = 7V; Max Vgs = 2V

BOXFET: Symmetric high voltage transistors: Max Vds = 5.5V; Max Vgs = 5.5V

EGFETs: 1.8V transistors with additional back gate control

FETs: 0.8V transistors with additional back gate control (HVT, NVT, LVT, SLVT) (excellent cryogenic performance)

High density memory: SRAMs (0.5V option) / eMRAMs

Digital Power supply scaling 0.8V --> below 400mV: ULP- ultra low power performance

• Performance/Power ratio:

Up to 50% more performance

Up to 70% lower power

(NOTE: All data as compared to bulk 22nm CMOS process)

SiGe Heterojunction Bipolar Transistors (HBTs) at cryogenic temperatures

- Unlike conventional bipolar transistors, when cooled SiGe HBTs exhibit **improved frequency response**, current gain, noise, bandwidth, output conductance and other performance metrics.
- **BiCMOS** (SiGe HBT + Si CMOS) platform **ideal mixed-signal technology** that marries high-performance SiGe HBTs for analog, RF, and microwave circuits, with Si CMOS to support highly-integrated system functionality.
- Fabricated on large wafers (300 mm) at high yield and low cost using conventional silicon processing techniques and silicon economy-of-scale.
- SiGe HBTs cooled to temperatures as low at 70 mK demonstrated operability for a variety of interesting circuit designs (gain of 2000 at 100 mK at only a few μW dissipation).
- At sub-K, the amplification principle becomes fundamentally quantum mechanical in nature, as tunneling becomes the dominant transport mechanism. Constant operation across temperature below ~7K.

H. Ying et al., "Operation of SiGe HBTs Down to 70 mK," in IEEE Electron Device Letters, vol. 38, no. 1, pp. 12-15, Jano 2017.

Transistor Models and Library Development for Radiation Hardness

Collaboration with CERN (65 nm)

Transistor models

Irradiation up to 1 Grad for various transistor sizes

Standard Cell Libraries

6 libraries @ 500Mrad, T= -30 & 25 9 track normal VT 12 track low VT

Transistor characteristic curves for PMOS (top) and NMOS (bottom)

Lifetime Studies and Library Development for LAr (89K)

- Lifetime studies to determine Hot Carrier Effect degradation
- Characterized and modelled transistors operating at 89K;
- Created **custom standard cell library** (~230 gates), compatible with P&R, to avoid hot-carrier degradation;
- Creation of timing and power files for custom library, essential for static timing analysis and complex digital designs.

Example of Spice model simulation with foundry models vs. measured data:

Points: measurement (= custom models) Lines: foundry models extrapolated at 89K

W/L=5/5

SC electronics and cryo-CMOS modeling and extraction

- Collaboration with EPFL for measuring and cryo EKV model for analog design
- Development of test structure for RF/low-freq noise characterization of transistor

EPFL Simplified EKV modeling for 22FDX at 3 K

The normalized transconductance efficiency with the application of simplified EKV model on EG FDSOI devices at room temperature; (left) nMOS, (right) pMOS.

SC electronics and cryo-CMOS modeling and extraction

In collaboration with **Synopsys:**

- SC electronics models (MIT, FNAL)
- cryoCMOS models (FNAL)

TCAD-To-SPICE Sub-Flow Extracts SPICE Model From TCAD Before Wafers Are Available

Mystic extracts SPICE or Verilog-A compact model from Sentaurus Device Output

Cryogenic ASIC testing

4K cryocooler with custom large cold finger

Collaboration with ANL (W. Armstrong) for cold operation in test beam and irradiation area at FNAL

 \rightarrow Radiation hardness + cryogenic operation

LAr readout electronics (89K) and Skipper CCD Readout (~100K)

DUNE front end electronics for LAr TPC

CCDs for Low Noise Imaging

- CCDs have long been the main choice for low noise scientific imaging
- The low noise has been enabled by a combination of integrating the readout for long periods and using correlated double sampling (CDS) [1]
 - Unfortunately, 1/f noise means that there was a limit to the effectiveness of this approach
 - Long integration moved the content of interest to lower and lower frequencies
 - The spreading out of the CDS sampling points reduced the filtering of flicker noise

The Skipper-CCD Principle

- What if instead of one long sample, we took many short ones?
- Avoid shifting to 1/f-dominated region.
- Samples are still uncorrelated; reduce noise as \sqrt{N} .
 - (4.478 e⁻rms/pix) - 10 (1.449 e⁻rms/pix) Fig. 8 Frequency response of (0.320 e⁻rms/pix) 200 (a) _1000 (0.150 e⁻ms/pix) the Skipper readout system for $T_S = 10 \ \mu s$ and N = 101.2 (a) and for $T_S = 2.5 \ \mu s$ and Normalized Frequency 70 70 8.0 80 80 80 (b) N = 10 (**b**), N = 20 (**c**) and $N = 100 \, (\mathbf{d})$ amplitude 0.8 (d) 0.4 -2 0 2 -3 -1 З Pixel value [e] 50 250 100 150 200 300 Images from Moroni, et al. [7] frequency [kHz] 🚰 Fermilab

Integrated noise << 1 e- is possible!

MIDNA: Sub-electron skipper-CCD readout with multi-channel cryogenic low-noise readout ASICs

- OSCURA 10kg dark matter detector (28Gpixel, 24K channels)
- 65nm CMOS, operates at roomT and 84K
- 2.5 mm x 1 mm
- Four analog channels
- On chip low-noise bandgap reference and biasing
- Sub-e⁻ read noise from channel at 10 µs integration times
- < 6 nV/ \sqrt{Hz} input referred noise at 10 kHz
- 3000 e⁻ dynamic range
- High linearity, $R^2-1 = -8.5e-7$
- Cryogenic operation down to 84 Kelvin
- Selectable gain
- 4.2 mW per channel

MIDNA 1 Achieves Sub-electron CCD Readout Noise

- Even with MIDNA at room temperature, subelectron readout noise was achieved
- Noise is dominated by the CCD
- 0.2 e-rms achieved with 1000 piled up reads

Skipper CCD-in-CMOS

- Utilize a commercial 180nm CMOS Image Sensor process for lower noise performance (Collaboration with SLAC and Tower Semiconductor)
- Noise of a pinned photodiode (0.7e-)
- With 10 averages we hope to achieve ~0.2e- noise at 1µs per read

22

nducting Electronics and Detectors Workshop

SPROCKET: Skipper CCD-in-CMOS Parallel Read-Out Circuit

Severely constrained power and layout area for the front-end and ADC circuits.

Sensor outputs

In-pixel compact ADC

- Cryogenic Readout IC for Skipper-CCD
- 100 KSPS in-Pixel ADC

10b * **100 kHz** * **1 MPix** = **1 Tbps!** Data compression is important:

- Zero-suppression
- PCA
- ML-based Autoencoder

Cryo ASICs at 4K

3x3mm 22nm Fermilab tape out (Nov 2021)

Deep cryogenic electronics on advanced technology nodes (GF 22 FDX)

- Cryogenic modelling for development of 4K process design kit for GF 22 FDX with EPFL, Synopsys & GF
- Quantum Science center (National Quantum Initiative center led by ORNL)

Ion trap based Quantum Simulator: Cryoelectronics Controller – Low noise, high speed, high voltage DACs

- Compact Optical Atomic Clocks: Room temperature, integrated control Joint DOE-DOD project with MIT LL
- High speed cryogenic ADCs at 4K with Industry
- Precision timing for SNSPD detectors

Capacitive DAC test structure for high-speed ADC

- Joint development with Microsoft Quantum, Sydney
- The chip is fully functional and performed as expected
- The transfer function shows the source followers worked as intended
- The control bits provide binary scaled adjustments of the held voltage
- The bootstrapped switch works very quickly to charge the sample capacitors

28 11/29/2022 Davide Braga | JLAB Applications of Superconducting Electronics and Detectors Workshop

Michigan Chip towards 10 GSPS ADC with 12b resolution operating at 4K

- The tapeout of the Michigan ASIC was a key milestone for the effort
- It includes four full sub-ADCs, input buffering, reference generation, full prototype PLL, clock generation alternatives, digital interface, and digital sample storage
- The first major chip collaboration with Microsoft with multiple contributors
- Low power ADC for quantum readout

Fermilab

Cryo DAC for current biasing

- Fully thermometric Current switching DACs designed for SQUID biasing
- Separate current DACs required for SQUID current bias and flux bias
- \approx 40 % variation observed in SQUID
- Low power consumption to stay within limited power budget (\approx 1 W at 4 K)
- Low current noise to maximise readout fidelity and avoid decoherence

Specification	DAC 1	DAC 2
Maximum Current	2 mA	120 <i>µ</i> A
Resolution	8 bits ($pprox$ 7.8 μ A step)	6 bits ($pprox$ 2 μ A step)
Maximum Power Consumption	$pprox$ 200 μ W	$pprox$ 12 μ W
Settling Time	< 100 <i>n</i> s	< 100 <i>ns</i>
Output noise @10 Hz	$< 1 \text{ nA}/\sqrt{Hz}$	$<$ 300 pA/ \sqrt{Hz}
Output noise @10 MHz	$<$ 200 pA/ \sqrt{Hz}	$<$ 50 pA/ \sqrt{Hz}
		Ster Ster

30 11/29/2022 Davide Braga | JLAB Applications of Superconducting Electronics and Detectors Workshop

ASICs for SNSPD readout

NECQST: Novel Electronics for Cryogenic Quantum Sensors Technology

- Cryogenic (4K) SiGe HBT Low-Noise Amplifier (LNA), optimized for lowjitter low-power readout of Superconducting Nanowire Single Photon Detectors (SNSPDs).
- Chip results without SNSPD are promising (some limitation in current test setup). Waiting for measurements with SNSPD

DOE Microelectronics Co-Design Research: "Hybrid Cryogenic Detector Architectures for Sensing and Edge Computing enabled by new Fabrication Processes"

Advancement of two complementary classes of cryogenic state-of-the-art single-photon and particle detectors:

- the Skipper CCD-in-CMOS silicon detector
- a hybrid detector platform based on superconducting nanowires

Development and co-design of:

- advanced fabrication and integration techniques
- novel optimized hybrid readout architectures
- cryo-ASICs and cryotron-based superconducting electronics for integrated sensing and data reduction at source, through feature extraction and edge computing.

🚰 Fermilab

Hybrid nanowire-based superconducting detector platform

a Superconducting Detectors xTron xTron Cryo-CMOS Cryo-CMOS

Hybrid architecture for cryogenic detectors, based on the co-design of:

- 1 superconducting sensor (SNSPD),
- 2 nanocryotron-based superconducting electronics (xTRON),
- 3 cryoCMOS ASIC in nanometer scale (22nm FDX).
- develop the technology required for overall integration at cryogenic temperatures (Matt Shaw – JPL)
- SC and cryo-CMOS modeling and extraction (Synopsys, EPFL)

Goal: scalable, large count detector with edge computing and integrated sensing

Device-circuits-system codesign will concurrently enable large channel count, power optimization, impedance matching, edge compute and feature extraction, and data processing

Superconducting Nanowires Detectors

As PHOTON DETECTORS:

- Highest performing detectors available for time-correlated single photon counting from the deep UV to the mid-infrared
- Demonstrated detection efficiencies as high as 98% at 1550 nm
- Timing jitter below 3 ps
- Effectively zero dark count rates
- Intrinsic photon number resolution
- Maximum count rates exceeding 1 Gcps in arrays

As PARTICLE DETECTORS:

- Can have high segmentation (~10um "pixels")
- Can be truly edgeless detector (important for beam monitoring)
- Operation in high magnetic field (5T)
- Radiation hardness to be investigated at Fermilab test beam facility 11/29/2022

Exploited for photon detection (classical and quantum optics and communication)

Unique capabilities for farforward detectors that operate close to the beam (high T, high radiation, high segmentation)

Superconducting Integration (Matt Shaw, JPL)

- Caltech/JPL to develop a nanofabrication process which will enable indium bump bonding of SNSPD focal planes to interposer structures,
- Evaluate the limits of ultra-high-density cryogenic microwave interconnects,
- and perform interface tests between SNSPD devices and digital readout electronics developed at FNAL and MIT.

Nanocryotrons (MIT, K.Berggren)

- Family of devices based on superconducting nanowires
- Could thus be monolithically integrated with the nanowire sensor
- Can be configured to operate as comparators, logic gates, signal level shifters, memories, shift registers...
- Impedance matching drive high-impedance loads and drive following cryoCMOS stage
- \rightarrow Ideally suited for feature extraction and data reduction at the edge
- Evaluating radiation hardness (fabrication and architecture) and optimal energy budgeting
- Developing increasingly complex circuits as well as work on yield

CryoCMOS ASIC

- Operation at <4K demonstrated in modern, state-of-the-art commercial processes (no special processing)
- Leverage low power, high performance ASICs for signal conditioning, time-tagging, data concentrator/edge computing, and serialization/readout

Total Pins: 22

- 6 analog inputs
- 7 digital inputs
- 3 digital outputs
- 6 power pins

Not Shown:

* RO1, HALT, INCR, and STOP_FINE are mux'd to **two** digital outputs with the select done by 4 shift register bits. * RESET pin

Simulation Results: TDC Jitter vs *T*_{*in*}

$$\sigma_{jitt} = \sigma_{tp} \times \sqrt{N_{stage} \times 2 \times \sqrt{Q_{coarse}}}$$
$$= \kappa_{jitt} \sqrt{Q_{coarse}}$$

Assuming that maximum allowable jitter is approximately ½ LSB:

Corner:	тт	FF	SS	FS	SF
κ _{jitt} [fs]	66.18	55.9	80.7	65.0	61.7
$\sigma_{jitt(max)}$ [fs]	1.3	1.0	1.8	1.4	1.2
$Q_{coarse(max)}$	385	320	497	463	378
Dynamic Range [ns]	<u>55.4</u>	40.2	83.7	68.5	53.1

Ring Oscillator Time Jitter vs. Qcoarse

State of the Art

	Chen '17	Sesta '18	Enomoto '19	Palaniappan '19	Khaki '21	Lee '21	DILVERT (sim) '21
Architecture	ΔΣ TDC	Counter + Vernier Delay Line	Counter + Pulse-Shrink Delay Line	Cap Boost Vernier Delay Line	ΔΣ TDC w/ GSRO	SAR TDC	Counter + Vernier Delay Line
Process	65nm	0.35 μm	0.18 μm	180 nm	40nm FPGA	130nm	22nm SOI
Resolution	0.48 ps	7 ps	2.0 ps	1.74 ps	0.18 ps	6.6 ps	2.7 ps
Dynamic Range	-	80 ns	120 ns	0.112 ns	4.5 ns	1.7 ns *	55.4 ns
Power	3 mW	-	18 mW	0.217 mW	9.24 mW	0.504 mW	0.5 mW
Rate	-	20 MS/s *	3.3 MS/s	50 MS/s	1600 MS/s	10 MS/s	100 MS/s
FoM	-	-	3.33	0.30	2.71	0.51	41.04

 $FoM = \frac{[Dynamic Range in ns]}{[Power in mW][Resolution in ps]}$

* = calculated from available data

Superconducting Electronics

PDK and Tools

- MIT-LL SFQ5ee Superconducting Process
- LVS and DRC decks compatible with existing toolset at Fermilab
- InductEx EM Solver has support for SFQ5ee

Mesh of EM test structure

44 11/29/2022 Davide Braga | JLAB Applications of Superconducting Electronics and Detectors Workshop

Superconducting Amplifiers

- TWPAs and JPAs for ADMX-BREAD using a super conducting fab at MIT-LL
- Collaborating with Washington University at St. Louis
- Established design flow for Josephson Parametric Amplifiers (JPA)
- Using JPA design flow as a foundation to study Traveling-Wave Parametric Amplifiers (TWPA)
- Layout of compact JPA using MIT LL SFQ5ee PDK

JPA Simulation

=o_shunt L:72.4p

Al-on-chip : To solve the HEP data challenge

Al-on-chip: data processing at source

Hardware - software codesign, driven by edge compute: Processing data at source, real-time feedback and control.

1st Al-on-Chip for HEP: Radhard, Low-power, Low-latency Autoencoder
- Tested and working well !!!!

ECON-T for HG CAL **(7-20x data compression: 48 pixel,** Inference every 25 ns**).** Established design methodology.

Working with Siemens/ Mentor Graphics for integrating hls4ml with Catapult HLS

• Al-in-Pixel: Data processing at source

In-pixel PCA vs. Autoencoder (30x - 80x data reduction: 1024 pixel)

Algorithm utilizes the extremely redundant data structure to achieve a high compression ratio while maintaining good image reconstruction capability

Establishing new design flow to overcome implementation challenges arising from routing congestion

inputs

Reconfigurable Edge AI – Solve the HEP data challenge

- Collaboration with Columbia U. & Northwestern U.
- Edge AI: Combining two established open-source platforms (ESP and HLS4ML) into a new system-level design flow to build and program a System on chip

In the modular tile-based architecture, we integrated a low-power 32-bit RISC-V microcontroller (Ibex), 200KB SRAM-based memory, and a neural-network accelerator for anomaly detection utilizing a network-on-chip.

• Embedding FPGAs on detector: Radhard/ cryogenic eFPGA onchip – with Flex Logix (22nm / 28nm). Establishing design flow and investigating extreme environment performance

48 11/29/2022 Davide Braga | JLAB Applications of Superconducting Electronics and Detectors Wo

Thank you!

