

Some Recent Musings on Quantum Computing

Wolfgang Mauerer <wolfgang.mauerer@othr.de> Technical University of Applies Sciences Regensburg

Based on joint work with M. Schönberger, M. Franz, L. Wolf, I. Sax, T. Krüger (OTH) and M. Periyasamy, A. Plinge, D. D. Scherer, S. Scherzinger, Ch. Ufrecht, Ch. Mutschler

July 5th, 2022

GPG/PGP-ID 98356E1E, Fingerprint: 5920 9407 AB5C 8B28 3C7B 4F02 F16F 2523 9835 6E1E.

Quantum Computing Algorithms & Applications

QC: Research Necessities

- 1. Explore precise limits (fundamental & technical)
- 2. Consider problems holistically
- 3. Maximise utility

Possible Applications Reinforcement Learning Optimisation

Databases

Reinforcement Learning

Reinforcement Learning II

Ingredients

State

Action

- Reward/Punishment
- Tradeoff between current and future gains

Reinforcement Learning II

Bellman Optimality Equation

$$Q_*(s,a) = \mathbb{E}\Big[R_t + \gamma \max_{a'} Q_*(S_{t+1},a') \mid S_t = s, A_t = a\Big]$$

Ingredients

State

- Action
- Reward/Punishment
- Tradeoff between current and future gains

Advantage & Disadvantage

- Switch between *exploration* and *exploitation*
- *Q* function is hard to compute

Bellman Optimality Equation

$$Q_*(s,a) = \mathbb{E}\Big[R_t + \gamma \max_{a'} Q_*(S_{t+1},a') \mid S_t = s, A_t = a\Big]$$

1. Reinforcement Learning

Quantum Reinforcement Learning

Optimisation

Boolean Satisfiability

$$\begin{split} f(\vec{x}) = & (x_1 \vee \bar{x}_2 \vee \bar{x}_4) \wedge (x_2 \vee x_3 \vee x_5) \wedge \\ & (x_1 \vee x_4 \vee \bar{x}_6) \end{split}$$

Annealers and QUBOs

$$\min_{\vec{x}} \left(\sum_i c_{ii} x_i + \sum_{i \neq j} c_{ij} x_i x_j \right)$$

Reductions

• Choi:
$$k$$
-SAT \leq_{p} MIS \leq_{p} QUBO

Backbone

Boolean Satisfiability

$$\begin{split} f(\vec{x}) = & (x_1 \vee \bar{x}_2 \vee \bar{x}_4) \wedge (x_2 \vee x_3 \vee x_5) \wedge \\ & (x_1 \vee x_4 \vee \bar{x}_6) \end{split}$$

Annealers and QUBOs

$$\min_{\vec{x}} \left(\sum_{i} c_{ii} x_i + \sum_{i \neq j} c_{ij} x_i x_j \right)$$

Reductions

Choi:
$$k$$
-SAT \leq_{p} MIS \leq_{p} QUBO

Backbone

Maximise Utility

$$\min_{\vec{x}} \left(\sum_{i \in I} c_{ii} x_i + \sum_{(i,j) \in K} c_{ij} x_i x_j \right)$$

Maximise Utility

Maximise Utility

Databases

Comparison to classical DP

Speedups for small queries³ But: Limits quickly reached

³Note that we consider simplified queries for the QPU, to avoid discretisation issues.

Co-Designing Custom QPUs

Impact on IBM Q

- Higher connectivity: Drastic impact
- ▶ Gate sets: Moderate impact

Extended Connectivity Density

Software+Systems Engineering

OTH Regensburg: > 300 Commits to Jailhouse@GitHub

R. Ramsauer, D. Lohmann, WM: Look mum, no VM exits! (almost), Proc. 13th Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT) (2017)

OTH Regensburg: > 300 Commits to Jailhouse@GitHub

R. Ramsauer, D. Lohmann, WM: Look mum, no VM exits! (almost), Proc. 13th Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT) (2017)

Thank you!

Some Recent Musings on Quantum Computing

Appendix/Backup

Applications				
g Quantum Algorithms				
Software Abstractions & Clustering				
Hypervisor & Operating System				
Engineering & Class. Interconnects				
reg Topology Management Classical Control				
Quantum Error Correction				
Interconnects and Control				
QBits and Gates				

4.

		definition and the definition of the	def as lus wish (000 (mbs))
<pre>A strong "Device" gradient in the strong "Device strong "Devi</pre>		<pre>adf construct_booklookl, apprise, y = sockl.htm;ywi_lift(incosten) y = sockl.htm;ywi_lift(incosten) y = sockl.htm;ywi_lift(incosten) y = socklastwy, appring, y = sock</pre>	<pre># Start & July 40 (# 100)</pre>
C) PISKIC	cha for		C QISITI
 A construction of the constructio	$\begin{split} & L(\theta) \leftarrow (y-q)^2 \qquad > \ Loss \\ & Update \theta (param shift rule [36], [47]) \\ & \text{if } s \mod update = 0 \text{ then} \\ & \theta^- \leftarrow \theta \\ & \text{end for} \\ \\ & \text{b Multi Query Optimization} \\ & \text{Init MQO QUBO } qm, \text{circ. params } \beta, \gamma \\ & \text{Cun. } c_{\text{adr}} \leftarrow \text{IsingCoeffs}(qm) \end{split}$	$ \begin{array}{l} & \text{ aff } p \in _ising_model (operator, every, \\ writing) \\ & \text{ model} : = \text{model} (``writing) \\ & \text{ model} := \text{model} (``writing) \\ & \text{ model} := \text{model} (``writing) \\ & \text{ writing} := \text{ model} (``writing) \\ & \text{ model} := \text{ model} := \text{ model} (``writing) \\ & \text{ model} := \text{ model} := \text{ model} (``writing) \\ & \text{ model} := \text{ model} := \text{ model} (``writing) \\ & \text{ model} := \text{ model} := \text{ model} (``writing) \\ & \text{ model} := \text{ model} := \text{ model} (``writing) \\ & \text{ model} := \text{ model} := \text{ model} (``writing) \\ & \text{ model} := \text{ model} := \text{ model} (``writing) \\ & \text{ model} := \text{ model} := \text{ model} (``writing) \\ & \text{ model} := \text{ model} :$	And antropological and a second secon
<pre>states</pre>	$ \begin{array}{l} hl \leftarrow \{\}\\ for \ k \leftarrow 0, p \ \text{do}\\ hl \leftarrow hl \ \sim \ \text{CostHam}(c_{\min}, c_{qdr})\\ hl \leftarrow hl \ \sim \ \text{MixerHam}()\\ end \ for\\ qc \ \leftarrow \ \text{buildQCircuit}(hl, \beta, \gamma)\\ Initialize \ classical \ optimizer \ opt\\ while \ - \ \text{coverged do}\\ \beta, \gamma \ \leftarrow \ opt. \ \text{step}(c, \beta, \gamma)\\ end \ \text{while}\\ r \ \leftarrow \ \text{ample}(qc, \beta, \gamma) \end{array}$	0.1 ret_1 (he_e was) (here(a, was(a))) 0.2 ret_1 (he_e was) (here(a, was(a))) 0.2 ret_2 (here(a, was(a))) 0.3 ret_2 (here(a, was(a))) 0.4 ret_2 (here(a, was(a))) 0.5 ret_2 (here(a, was(a))) 0.6 ret_2 (here(a)) 0.6 ret_2 (here(a)) 0.6 ret_2 (here(a)) 0.7 ret_2 (here(a)) 0.8 ret_2 (here(a)) <th>white an an and a second secon</th>	white an an and a second secon