Deeply Learning Deep-Inelastic Scattering Kinematics

Markus Diefenthaler

Building blocks of matter

The dynamical nature of nuclear matter

Nuclear Matter Interactions and structures are inextricably mixed up

Ultimate goal Understand how matter at its most fundamental level is made

Observed properties such as mass and spin emerge out of the complex system

To reach goal precisely image quarks and gluons and their interactions

The Electron-Ion Collider: Frontier accelerator facility in the U.S.

Brookhaven National Laboratory and Jefferson Lab will be host laboratories for the EIC Experimental Program. Leadership roles in the EIC project are shared.

EIC Timeline: Operations start a decade from now

EIC, ML, and Quantum Computing, July 19, 2022.

EIC User Group (EICUG)

Yellow Report Initiative by the EIC User Group

- The EIC Yellow Report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the EIC: <u>arXiv:2103.05419</u>
- The studies leading to the EIC Yellow Report were commissioned and organized by the EIC User Group.
- The EIC Yellow Report has been important input to the successful DOE CD-1 review and decision.

Next Priorities for the EIC User Group

• Formation of the first EIC collaboration.

Deep-inelastic scattering (DIS) of electrons off protons

Ability to change Q² changes the resolution scale

Ability to change **x** projects out different configurations where different dynamics dominate

Inclusive DIS Measurements

Kinematics reconstructed from any combination of:

- Energy of the scattered electron
- Angle of the scattered electron
- Energy of the jet
- Angle of the jet

Three analytical reconstruction methods:

Method	Requires	Pro	Contra	
Electron	$E_{l'}$, $ heta_{l'}$	precise	sensitive to	
(EL)			QED radiation	
Jacques-Blondel	$\delta_{\mathcal{H}}, P_{T,\mathcal{H}}$	resistant to	needs precise jet	
(JB)		QED radiation	energy measurements	
Double Angle	$ heta_{l'}$, $\gamma_{\mathcal{H}}$	no need for precise jet	poor resolution at low x	
(DA)		energy measurements	and low Q^2	

The idea is to build a physics-driven neural network method that combines the quantities determined with the classical methods in a way:

 $\begin{aligned} Q_{NN}^2 &= A_{Q^2}(Q_{EL}^2, Q_{DA}^2, Q_{JB}^2) + L_{Q^2}(A_{Q^2}, E_{l'}, \theta_{l'}) + H_{Q^2}(A_{Q^2}, P_{T,H}, \delta_H) \\ \text{And reconstruct } x, \text{ with } Q_{NN}^2 \text{ as an input, in the form:} \\ x_{NN} &= A_x(x_{EL}, x_{DA}, x_{JB}) + L_x(A_x, Q_{NN}^2, E_{l'}, \theta_{l'}) + H_x(A_x, Q_{NN}^2, P_{T,H}, \delta_H) \end{aligned}$

Neural networks can be used to reconstruct the kinematics by weighting classical reconstructions and using all four of the measured quantities as corrections.

Slide from Abdullah Farhat (ODU)

Properties of the DNN

- Effective: Universal approximation capability: can approximate any continuous function to arbitrary accuracy
- **Robust**: Increasing the depth of the network (i.e. the number of terms in the sum) necessarily reduces the error
- **Computationally Efficient**: Structure avoids "vanishing" gradients arising in the backpropagation algorithm

Results for x and Q^2

Kinematic phase space at the ZEUS experiment:

Bin	Events	Resolution of $\log x$		Resolution of $\log Q^2/1GeV^2$	
1	301780	NN: 0.070	EL: 0.083	NN: 0.035	EL: 0.035
		JB: 0.180	DA: 0.103	JB: 0.203	DA: 0.062
2	350530	NN: 0.069	EL: 0.082	NN: 0.040	EL: 0.043
		JB: 0.167	DA: 0.096	JB: 0.192	DA: 0.064
3	138456	NN: 0.098	EL: 0.130	NN: 0.055	EL: 0.053
		JB: 0.138	DA: 0.100	JB: 0.150	DA: 0.077
4	74844	NN: 0.067	EL: 0.084	NN: 0.044	EL: 0.046
		JB: 0.117	DA: 0.077	JB: 0.138	DA: 0.063
5	31043	NN: 0.064	EL: 0.091	NN: 0.036	EL: 0.041
		JB: 0.102	DA: 0.073	JB: 0.117	DA: 0.053
6	11475	NN: 0.053	EL: 0.079	NN: 0.033	EL: 0.036
		JB: 0.083	DA: 0.061	JB: 0.100	DA: 0.045
7	3454	NN: 0.050	EL: 0.069	NN: 0.036	EL: 0.038
		JB: 0.074	DA: 0.055	JB: 0.093	DA: 0.042
8	624	NN: 0.036	EL: 0.055	NN: 0.033	EL: 0.037
		JB: 0.067	DA: 0.045	JB: 0.095	DA: 0.041

EIC, ML, and Quantum Computing, July 19, 2022.

We have an approach for **Deeply Learning Kinematics of Inclusive DIS**.

We have agreed upon our next steps:

- Demonstrate results for EIC project detector and publish.
- Deeply Learning Kinematics of Semi-Inclusive DIS, based on existing approach.
- **Deeply Learning Kinematics of Exclusive Measurements**, based on existing approach.

We have discussed ways to continue our work:

- 1. Complementary approach to deeply learning kinematics of Inclusive DIS, directly from:
 - Energy of the scattered electron
 - Angle of the scattered electron
 - Energy of the jet
 - Angle of the jet
- 2. Work out interference with measurements.

Detector Level

Ground Truth

EIC, ML, and Quantum Computing, July 19, 2022.