PDFs and machine learning

P. Zurita

in collaboration with **D. Rentería-Estrada**, **R. Hernández-Pinto** and **G. Sborlini**

About Parton Distribution Functions (PDFs)

About Parton Distribution Functions (PDFs)

• At LO $f_i(x, \mu^2)$ is the **probability** density of finding the parton *i* inside the proton, carrying a fraction **x** of the proton's longitudinal momentum (in the Breit frame) when we look at it with scale μ^2 .

Beyond LO the probabilistic interpretation is no longer clear.

- The PDFs can't be computed from first principles in pQCD.
- We do know how they evolve with the scale, via the DGLAP evolution equations.

- The PDFs can't be computed from first principles in pQCD.
- We do know how they evolve with the scale, via the DGLAP evolution equations.
- To obtain the PDFs we do **global** fits to data.

- The PDFs can't be computed from first principles in pQCD.
- We do know how they evolve with the scale, via the DGLAP evolution equations.
- To obtain the PDFs we do **global** fits to data.

 We have one PDF per light flavour (up, down, strange), their anti-particles and the gluon.

- The PDFs can't be computed from first principles in pQCD.
- We do know how they evolve with the scale, via the DGLAP evolution equations.
- To obtain the PDFs we do **global** fits to data.

- We have one PDF per light flavour (up, down, strange), their anti-particles and the gluon.
- In DIS, by measuring the outgoing electron we know everything about the kinematics.
- But we need more observables.

Ex. Drell-Yan

Ex. Drell-Yan

• At LO $x_1, x_2 = \sqrt{M^2/s} e^{\pm y}$. Beyond LO this is no longer true.

Ex. Drell-Yan

- At LO $x_1, x_2 = \sqrt{M^2/s} e^{\pm y}$. Beyond LO this is no longer true.
- Possible impact in :
 - p+A collisions (QGP benchmarking).
 - polarised collisions (spin).
 - BSM searches.

Accessing the kinematics using ML

Renteria-Estrada et *al.,* arXiv:2112.05043 [hep-ph]

- We looked at one particular process: $p + p \rightarrow \pi^+ + \gamma$
- Reconstructed x_1, x_2 and z from the momenta of π^+, γ
- For RHIC kinematics, so we could compare with previous results.

D. de Florian and G. Sborlini, Phys.Rev.D 83 (2011) 074022

Accessing the kinematics using ML

Renteria-Estrada et *al.,* arXiv:2112.05043 [hep-ph]

- We looked at one particular process: $p + p \rightarrow \pi^+ + \gamma$
- Reconstructed x_1, x_2 and z from the momenta of π^+, γ
- For RHIC kinematics, so we could compare with previous results.

D. de Florian and G. Sborlini, Phys.Rev.D 83 (2011) 074022

- This type of calculation is done with Vegas.
- Full check of kinematic dependences.

Second: check correlations

LO Kinematics

$$x_{1,2} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\eta^{\pm \pi}} + e^{\eta^{\pm \gamma}} \right)$$

Second: check correlations

LO Kinematics

$$x_{1,2} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\eta^{\pm \pi}} + e^{\eta^{\pm \gamma}} \right)$$

NLO Kinematics

$$x_{1,2} = ?$$

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\pm \eta^{\pi}} + e^{\pm \eta^{\gamma}} \right)$$

Kinematics: NLO

$$x_{1,2}^{rec.} = ?$$

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\pm \eta^{\pi}} + e^{\pm \eta^{\gamma}} \right)$$

Kinematics: NLO $x_{1,2}^{rec.} = ?$

Experimental collaborations used

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma} e^{\pm \eta^{\pi}} - \cos(\phi^{\pi} - \phi^{\gamma}) p_T^{\gamma} e^{\pm \eta^{\gamma}}}{\sqrt{s}}$$

4.8 4.8 6.4 8.0 9.6 11.2 12.8 14.4 16.0 17.6 19.2

19.2

17.6

16.0

14.4

12.8

11.2

9.6

8.0

6.4

X_{Real} (x1000)

D. de Florian, G. Sborlini, PRD 83, 074022

Kinematics: LO

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\pm \eta^{\pi}} + e^{\pm \eta^{\gamma}} \right)$$

Kinematics: NLO $x_{1.2}^{rec.} = ?$

X'_{Rec}(x1000)

Experimental collaborations used

- At NLO we have real $(2 \rightarrow 3)$ and virtual $(2 \rightarrow 2)$ contributions and counterterms $(2 \rightarrow 2)$.
- Cancellations can only happen in the MC integration when histograming.

$$\begin{split} \left\{\bar{p}_{T}^{\gamma}, \bar{p}_{T}^{\pi}, \bar{\eta}^{\gamma}, \bar{\eta}^{\pi}, \overline{\cos}(\phi^{\pi} - \phi^{\gamma})\right\} &\in \bar{\mathcal{V}}_{EXP} \\ \sigma_{j}(\bar{p}_{T}^{\gamma}, \bar{p}_{T}^{\pi}, \bar{\eta}^{\gamma}, \bar{\eta}^{\pi}, \overline{\cos}(\phi^{\pi} - \phi^{\gamma})) &= \int_{(p_{T}^{\gamma})_{j,MIN}}^{(p_{T}^{\gamma})_{j,MAX}} dp_{T}^{\gamma} \int_{(p_{T}^{\pi})_{j,MIN}}^{(p_{T}^{\pi})_{j,MIN}} dp_{T}^{\pi} \int dx_{1} dx_{2} dz \ d\bar{\sigma} \end{split}$$

 We weight the momentum fractions from the MC with the per-bin crosssection

$$(x_1)_j = \sum_i (x_1)_i \frac{d\sigma_j}{dx_1} (p_j; (x_1)_i)$$

With this we search for the mapping

$$X_{1,REC}: \ \bar{\mathcal{V}}_{EXP} \to \overline{X}_{1,REAL} = \{(x_1)_j\}$$

• Let us start with LO and use linear regression:

Basis:

Basis:
$$\mathscr{B}_{LO} = \left\{ \frac{p_T^{\gamma} e^{\eta^{\pi}}}{\sqrt{s}}, \frac{p_T^{\gamma} e^{\eta^{\gamma}}}{\sqrt{s}}, \frac{p_T^{\gamma} e^{-\eta^{\pi}}}{\sqrt{s}}, \frac{p_T^{\gamma} e^{-\eta^{\gamma}}}{\sqrt{s}}, \frac{p_T^{\pi}}{\sqrt{s}} \right\}$$

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\eta^{\pm \pi}} + e^{\eta^{\pm \gamma}} \right)$$

• Let us start with LO and use linear regression:

Basis:

nsis:
$$\mathscr{B}_{LO} = \left\{ \frac{p_T^{\gamma} e^{\eta^{\pi}}}{\sqrt{s}}, \frac{p_T^{\gamma} e^{\eta^{\gamma}}}{\sqrt{s}}, \frac{p_T^{\gamma} e^{-\eta^{\pi}}}{\sqrt{s}}, \frac{p_T^{\gamma} e^{-\eta^{\gamma}}}{\sqrt{s}}, \frac{p_T^{\pi}}{p_T^{\gamma}} \right\}$$

$$x_{1,2}^{rec.} = \frac{p_T^{\gamma}}{\sqrt{s}} \left(e^{\eta^{\pm \pi}} + e^{\eta^{\pm \gamma}} \right)$$

 At NLO we created three bases and tried to reconstruct x. Let us start with LO and use linear regression:

Basis:

sis:
$$\mathscr{B}_{LO} = \left\{ \frac{p_T^{\gamma} e^{\eta^{\pi}}}{\sqrt{s}}, \frac{p_T^{\gamma} e^{\eta^{\gamma}}}{\sqrt{s}}, \frac{p_T^{\gamma} e^{-\eta^{\pi}}}{\sqrt{s}}, \frac{p_T^{\gamma} e^{-\eta^{\gamma}}}{\sqrt{s}}, \frac{p_T^{\pi}}{p_T^{\gamma}} \right\}$$

$$x_{1,2}^{rec.} = \frac{p_T}{\sqrt{s}} \left(e^{\eta^{\pm \pi}} + e^{\eta^{\pm \gamma}} \right)$$

- At NLO we created three bases and tried to reconstruct x.
- We also tried RBF with the elements of the bases.

Neural networks

 For LO the complexity of the NN greatly surpasses the complexity of the problem.

Neural networks

For NLO NN provide very good reconstruction.