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Q2 = − (k − k′ )2x =
Q2

2P ⋅ q

About Parton Distribution Functions (PDFs)
The quark-parton model
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• To explain the DIS measurements at SLAC, Feynman, Bjorken,
and others (1969) proposed the so-called parton model which
states that

Assumption I: A fast moving hadron appears as a jet of par-
tons (quarks and gluons) moving in more or less the same
direction as the parent hadron and sharing its 3-momentum.

Assumption II: The reaction cross-section is the incoherent sum
of partonic cross-sections, as calculated with free partons.51

• We will now use the quark-parton model and results from the PP-I
course to derive the DIS cross-section. The kinematics is best
understood in the so-called Breit-, or infinite-momentum frame.

51By ‘incoherent sum’ we mean that cross-sections are added, instead of amplitudes.

8–11

dσDIS = ∑
i

dσl+i→l′ ⊗ fi

Deep Inelastic Scattering (DIS)
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8–11

‣ At LO     is the probability density of finding the parton i inside the 

proton, carrying a fraction x of the proton’s longitudinal momentum (in 

the Breit frame) when we look at it with scale . 

‣ Beyond LO the probabilistic interpretation is no longer clear.

fi(x, μ2)

μ2

dσDIS = ∑
i

dσl+i→l′ ⊗ fi

Deep Inelastic Scattering (DIS)
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‣ The PDFs can’t be computed from first principles in pQCD. 

‣ We do know how they evolve with the scale, via the DGLAP evolution 

equations. 
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‣ The PDFs can’t be computed from first principles in pQCD. 

‣ We do know how they evolve with the scale, via the DGLAP evolution 

equations. 

‣ To obtain the PDFs we do global fits to data.

‣ In DIS, by measuring the outgoing electron we know everything about the 

kinematics.

‣ We have one PDF per light flavour (up, down, strange), their anti-particles 

and the gluon.

‣ But we need more observables.
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‣ Ex. Drell-Yan

p(P1)

p(P2)

q(p1 = x1P1)

q̄(p2 = x2P2)
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‣ At LO . Beyond LO this is no longer true.x1, x2 = M2/s e±y
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‣ Ex. Drell-Yan

p(P1)

p(P2)

q(p1 = x1P1)

q̄(p2 = x2P2)

‣ At LO . Beyond LO this is no longer true.x1, x2 = M2/s e±y

‣ Possible impact in : 

‣ p+A collisions (QGP benchmarking). 
‣ polarised collisions (spin). 
‣ BSM searches.
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Accessing the kinematics using ML

‣ We looked at one particular process:          

‣ Reconstructed  and  from the momenta of   

‣ For RHIC kinematics, so we could compare with previous results.

p + p → π+ + γ

x1, x2 z π+, γ

Renteria-Estrada et al., 
arXiv:2112.05043 [hep-ph]

D. de Florian and G. Sborlini, 
Phys.Rev.D 83 (2011) 074022
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‣ For RHIC kinematics, so we could compare with previous results.

p + p → π+ + γ

x1, x2 z π+, γ

Renteria-Estrada et al., 
arXiv:2112.05043 [hep-ph]

D. de Florian and G. Sborlini, 
Phys.Rev.D 83 (2011) 074022

‣ This type of calculation is done with Vegas.

‣ Full check of kinematic dependences.
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Second: check correlations

LO Kinematics x1,2 =
pγ

T

s
 (eη±π + eη±γ)
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Kinematics: LO

Kinematics: NLO xrec.
1,2 = ?

D. de Florian, G. Sborlini, PRD 83, 074022

xrec.
1,2 =

pγ
T

s
 (e±ηπ + e±ηγ)

‣ Experimental collaborations used xrec.
1,2 =

pγ
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‣ At NLO we have real ( ) and virtual ( ) contributions and 

counterterms ( ).  

‣ Cancellations can only happen in the MC integration when histograming. 

2 → 3 2 → 2
2 → 2

{p̄γ
T, p̄π

T, η̄γ, η̄π, cos(ϕπ − ϕγ)} ∈ 𝒱̄EXP

σj(p̄γ
T, p̄π

T, η̄γ, η̄π, cos(ϕπ − ϕγ)) = ∫
(pγ

T)j,MAX

(pγ
T)j,MIN

dpγ
T ∫

(pπ
T)j,MAX

(pπ
T)j,MIN

dpπ
T ∫ dx1dx2dz dσ̄

‣ We weight the momentum fractions from the MC with the per-bin cross-
section

(x1)j = ∑
i

(x1)i
dσj

dx1
(pj; (x1)i)

‣ With this we search for the mapping

X1,REC : 𝒱̄EXP → X1,REAL = {(x1)j}
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‣ Let us start with LO and use linear regression:

‣ Basis:   

xrec.
1,2 =

pγ
T

s
 (eη±π + eη±γ)

ℬLO = {pγ
Teηπ

s
,

pγ
Teηγ

s
,

pγ
Te−ηπ

s
,

pγ
Te−ηγ

s
,

pπ
T

pγ
T }
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s
,

pγ
Te−ηπ

s
,

pγ
Te−ηγ

s
,

pπ
T

pγ
T }

‣ At NLO we created three bases 
and tried to reconstruct x.

‣ We also tried RBF with the 
elements of the bases.
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Neural networks

‣ For LO the complexity of the NN greatly surpasses the complexity of the 
problem.
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Neural networks

‣ For NLO NN provide very good reconstruction.
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