


Computational 
Methods in Physics

Simon Širca
Martin Horvat

Compendium for Students

Second Edition

Graduate Texts in Physics



Preface to the First Edition

This book evolved from short written homework instructions for the course in
Computational Physics at the Department of Physics, University of Ljubljana. The
feedback received from the students was used to gradually supplement the
instructions by oral presentations in the classroom and additional material on the
web. The heritage of this course, established and initially taught for a number of
years by Prof. Kodre, represented a basis onto which we attempted to span an even
richer manifold, and to better elucidate the “exercises” from the mathematical,
physical, as well as programming and computational viewpoints. The somewhat
spartan instructions thus evolved into a much more general textbook which is
intended primarily for third- and fourth-year physics students, and for PhD students
as an aid for all courses with a mathematical physics tinge. The book might also
appeal to mathematics students. It was one of our local goals to modestly inter-
weave physics and mathematics studies, and this is why the book steers between
mathematical rigidity and more profane perspectives of numerical methods, while it
tries to preserve the colorful content of the field of mathematical physics.

We were driven by the realization that physics students are often insufficiently
prepared to face various obstacles they encounter in numerical solution or modeling
of physical problems. Only a handful of them truly know how something can
“actually be computed” or how their work can be efficiently controlled and its
results can be reliably checked. Everyone can solve the matrix system Ax ¼ b, but
almost no one has an idea how to estimate the error and relate this estimate to the
possible true error. They use explicit integrators of differential equations indis-
criminately until they try to look closely at solutions of a problem as simple as
€x ¼ "x. The direness of the situation is compounded by many commercial tools
giving a false impression that all problems can be solved by a single keystroke. In
parts of the text where basic approaches are discussed, we insist on seemingly
ballast numerical details while, on the other hand, we did wish to offer at least some
“serious” methods and illustrate them by manageable examples. The book swings
back and forth between these extremes: it tries to be neither fully elementary nor
encyclopedically complete, but at any rate representative—at least for the first-time
reader.

ix

simon.sirca@fmf.uni-lj.si



The book is structured exactly with such gradations in mind: additional,
“non-compulsory” chapters are marked with stars H and can be read by particularly
motivated students or used as reference. Similarly, the

J
symbols denote simpler

tasks in the end-of-chapter problems, while more demanding ones are marked by
the symbols a. The main text is peppered with examples terminated by the
symbol /. The purpose of the appendices is not merely to remove the superfluous
contents from the main text, but to enhance the programming efficiency (above all,
Appendices B, C, E, J, and K). The sour apples we force our reader to bite are the
lack of detailed derivations and references to formulas placed in remote parts of the
text, although we tried to design the chapters as self-contained units. This style
requires more concentration and consultation with literature on the reader’s part, but
makes the text more concise. In turn, the book does call for an inspired course tutor.
In a typical one-semester course, she may handpick and fine-tune a dozen or so
end-of-chapter problems and supply the necessary background, while the students
may peruse the book as a convenient point of departure for work.

The end-of-chapter problems should resonate well with the majority of physics
students. We scooped up topics from most varied disciplines and tried to embed
them into the framework of the book. Chapters are concluded by relatively long
lists of references, with the intent that the book will be useful also as a stepping
stone for further study and as a decent vademecum.

In spite of all care, mistakes do occur. We shall be grateful to all readers turning
our attention to any error they might spot, no matter how relevant. The Errata is
maintained at the book’s web page http://cmp.books.fmf.uni-lj.si which also con-
tains the data files needed in some of the problems.

We wish to express our gratitude to Prof. Claus Ascheron, Senior Editor at
Springer, for his effort in preparation and advancement of this book, as well as to
Donatas Akmanavičius and his team for its meticulous production at VTeX.

The original text of the Slovenian edition was scrutinized by two physicists
(Profs. Alojz Kodre and Tomaž Prosen) as well as three mathematicians (Associate
Professors Emil Žagar, Marjetka Krajnc, and Gašper Jaklič). We thank them; from
the navigation between the Scylla and Charybdis of these reviewers, we emerged as
better sailors and arrived happily, after years of roaming the stormy seas, to our
Ithaca.

Ljubljana, Slovenia Simon Širca
Martin Horvat

x Preface to the First Edition

simon.sirca@fmf.uni-lj.si



Contents

1 Basics of Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Finite-Precision Arithmetic . . . . . . . . . . . . . . . . . . . . 1
1.2 Approximation of Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Optimal (Minimax) and Almost Optimal
Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Rational (Padé) Approximation . . . . . . . . . . . . . . . . . 10
1.3 Power and Asymptotic Expansion, Asymptotic Analysis . . . . . . 16

1.3.1 Power Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Asymptotic Expansion . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 Asymptotic Analysis of Integrals by Integration

by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.4 Asymptotic Analysis of Integrals by the Laplace

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.5 Stationary-Phase Approximation . . . . . . . . . . . . . . . . 25
1.3.6 Differential Equations with Large Parameters . . . . . . . 28

1.4 Summation of Finite and Infinite Series . . . . . . . . . . . . . . . . . . 32
1.4.1 Tests of Convergence . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.2 Summation of Series in Floating-Point Arithmetic . . . 34
1.4.3 Acceleration of Convergence . . . . . . . . . . . . . . . . . . . 37
1.4.4 Alternating Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.4.5 Levin’s Transformations . . . . . . . . . . . . . . . . . . . . . . 44
1.4.6 Poisson Summation . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.4.7 Borel Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.4.8 Abel Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.5 Series Reversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.6.1 Integral of the Normal Distribution . . . . . . . . . . . . . . 51
1.6.2 Airy Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi

simon.sirca@fmf.uni-lj.si



1.6.3 Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.6.4 Alternating Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.6.5 Coulomb Scattering Amplitude and Borel

Resummation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2 Solving Non-linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1 Scalar Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.1.1 Bisection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.1.2 The Family of Newton’s Methods

and the Newton–Raphson Method . . . . . . . . . . . . . . . 66
2.1.3 The Secant Method and Its Relatives . . . . . . . . . . . . . 70
2.1.4 Müller’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.2 Vector Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.2.1 Newton–Raphson’s Method . . . . . . . . . . . . . . . . . . . 74
2.2.2 Broyden’s (Secant) Method . . . . . . . . . . . . . . . . . . . . 75

2.3 Convergence Acceleration H . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.4 Polynomial Equations of a Single Variable: General Tools . . . . 80

2.4.1 Locating the Regions Containing Zeros . . . . . . . . . . . 82
2.4.2 Descartes’ Rule and the Sturm’s Method . . . . . . . . . . 85
2.4.3 Newton’s Sums and Vièto’s Formulas . . . . . . . . . . . . 87
2.4.4 Eliminating Multiple Zeros of the Polynomial . . . . . . 87
2.4.5 Conditioning of the Computation of Zeros . . . . . . . . . 88
2.4.6 General Hints for the Computation of Zeros . . . . . . . . 88

2.5 Polynomial Equations of a Single Variable: Specific
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.5.1 Bernoulli’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.5.2 Horner’s Linear Method . . . . . . . . . . . . . . . . . . . . . . 91
2.5.3 Bairstow’s (Horner’s Quadratic) Method . . . . . . . . . . 92
2.5.4 Laguerre’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.5.5 Maehly–Newton–Raphson’s Method . . . . . . . . . . . . . 95
2.5.6 The Eigenvalue Method . . . . . . . . . . . . . . . . . . . . . . 97
2.5.7 The Jenkins–Traub Method . . . . . . . . . . . . . . . . . . . . 98
2.5.8 The Hubbard–Schleicher–Sutherland Method . . . . . . . 98

2.6 Algebraic Equations of Several Variables H . . . . . . . . . . . . . . . 100
2.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2.7.1 Wien’s Law and Lambert’s Function . . . . . . . . . . . . . 105
2.7.2 Heisenberg’s Model in the Mean-Field

Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.7.3 Energy Levels of Simple One-Dimensional

Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.7.4 Propane Combustion in Air . . . . . . . . . . . . . . . . . . . . 110

xii Contents

simon.sirca@fmf.uni-lj.si



2.7.5 Fluid Flow Through Systems of Pipes . . . . . . . . . . . . 111
2.7.6 Automated Assembly of Structures . . . . . . . . . . . . . . 114

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3 Matrix Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.1 Basic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.1.1 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . 121
3.1.2 Computing the Determinant . . . . . . . . . . . . . . . . . . . 123

3.2 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.2.1 Analysis of Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.2.2 Gauss Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.2.3 Systems with Banded Matrices . . . . . . . . . . . . . . . . . 126
3.2.4 Toeplitz Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.2.5 Vandermonde Systems . . . . . . . . . . . . . . . . . . . . . . . 128
3.2.6 Condition Estimates for Matrix Inversion . . . . . . . . . . 130

3.3 Solving Ax ¼ b with Sparse Matrices . . . . . . . . . . . . . . . . . . . . 131
3.3.1 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.3.2 Iterative Methods Based on Krylov Subspaces . . . . . . 132
3.3.3 Preconditioning in Projection Methods . . . . . . . . . . . . 134

3.4 Solving Matrix Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.4.1 Sylvester Equations . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.4.2 Lyapunov Equations . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.5 Linear Least-Square Problem and Orthogonalization . . . . . . . . . 137
3.5.1 The QR Decomposition . . . . . . . . . . . . . . . . . . . . . . . 138
3.5.2 Singular Value Decomposition (SVD) . . . . . . . . . . . . 141
3.5.3 The Minimum-Norm Solution of the Least-Squares

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.6 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.6.1 Non-symmetric Problems . . . . . . . . . . . . . . . . . . . . . 147
3.6.2 The Power Method and Inverse Iteration . . . . . . . . . . 149
3.6.3 Symmetric Problems . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.6.4 Generalized Eigenvalue Problems . . . . . . . . . . . . . . . 152
3.6.5 The Quadratic Eigenvalue Problem . . . . . . . . . . . . . . 154
3.6.6 Converting a Matrix to Its Jordan Form . . . . . . . . . . . 154

3.7 Eigenvalue Problems with Sparse Matrices . . . . . . . . . . . . . . . . 156
3.7.1 Arnoldi’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.7.2 Hermitian and Non-Hermitian Lanczos

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.7.3 Preconditioning and Filtering . . . . . . . . . . . . . . . . . . 158

3.8 Pseudospectra of Matrices H . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.8.1 Definition of Pseudospectrum . . . . . . . . . . . . . . . . . . 158
3.8.2 Pseudospectra of Linear Operators . . . . . . . . . . . . . . . 161

Contents xiii

simon.sirca@fmf.uni-lj.si



3.9 Random Matrices H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
3.9.1 General Random Matrices . . . . . . . . . . . . . . . . . . . . . 165
3.9.2 Gaussian Orthogonal or Unitary Ensemble . . . . . . . . . 168
3.9.3 Cyclic Orthogonal or Unitary Ensemble . . . . . . . . . . . 171

3.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.10.1 Percolation in a Random-Lattice Model . . . . . . . . . . . 173
3.10.2 Electric Circuits of Linear Elements . . . . . . . . . . . . . . 175
3.10.3 Systems of Oscillators . . . . . . . . . . . . . . . . . . . . . . . 176
3.10.4 Image Compression by Singular Value

Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
3.10.5 Eigenstates of Particles in the Anharmonic

Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
3.10.6 Anderson Localization . . . . . . . . . . . . . . . . . . . . . . . 179
3.10.7 Spectra of Random Symmetric Matrices . . . . . . . . . . 181

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4 Transformations of Functions and Signals . . . . . . . . . . . . . . . . . . . 187
4.1 Fourier Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.2 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

4.2.1 Continuous Fourier Expansion . . . . . . . . . . . . . . . . . . 189
4.2.2 Discrete Fourier Expansion . . . . . . . . . . . . . . . . . . . . 191
4.2.3 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.2.4 Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.2.5 Fast Discrete Fourier Transformation (FFT) . . . . . . . . 196
4.2.6 Multiplication of Polynomials by Using the FFT . . . . 198
4.2.7 Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . 199
4.2.8 Sparse FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
4.2.9 Non-uniform (Non-equispaced) FFT . . . . . . . . . . . . . 201

4.3 Transformations with Orthogonal Polynomials . . . . . . . . . . . . . 204
4.4 Laplace Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

4.4.1 Use of Laplace Transformation with Differential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

4.5 Hilbert Transformation H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.5.1 Analytic Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.5.2 Kramers–Kronig Relations . . . . . . . . . . . . . . . . . . . . 219
4.5.3 Numerical Computation of the Continuous Hilbert

Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
4.5.4 Discrete Hilbert Transformation . . . . . . . . . . . . . . . . . 224

4.6 Continuous Wavelet Transformation H . . . . . . . . . . . . . . . . . . 227
4.6.1 Numerical Computation of the Wavelet Transform . . . 230

4.7 Discrete Wavelet Transformation H . . . . . . . . . . . . . . . . . . . . . 232
4.7.1 One-Dimensional DWT . . . . . . . . . . . . . . . . . . . . . . 232
4.7.2 Two-Dimensional DWT . . . . . . . . . . . . . . . . . . . . . . 238

xiv Contents

simon.sirca@fmf.uni-lj.si



4.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
4.8.1 Fourier Spectrum of Signals . . . . . . . . . . . . . . . . . . . 240
4.8.2 Fourier Analysis of the Doppler Effect . . . . . . . . . . . . 241
4.8.3 Use of Laplace Transformation and its Inverse . . . . . . 242
4.8.4 Use of the Wavelet Transformation . . . . . . . . . . . . . . 243

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

5 Statistical Analysis and Modeling of Data . . . . . . . . . . . . . . . . . . . . 249
5.1 Basic Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

5.1.1 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . 249
5.1.2 Moments of Distributions . . . . . . . . . . . . . . . . . . . . . 251
5.1.3 Uncertainties of Moments of Distributions . . . . . . . . . 252

5.2 Robust Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
5.2.1 Hunting for Outliers . . . . . . . . . . . . . . . . . . . . . . . . . 254
5.2.2 M-Estimates of Location . . . . . . . . . . . . . . . . . . . . . . 256
5.2.3 M-Estimates of Scale . . . . . . . . . . . . . . . . . . . . . . . . 258

5.3 Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
5.3.1 Computing the Confidence Interval

for the Population Mean . . . . . . . . . . . . . . . . . . . . . . 259
5.3.2 Comparing the Means of Two Samples

with Equal Variances . . . . . . . . . . . . . . . . . . . . . . . . 261
5.3.3 Comparing the Means of Two Samples

with Different Variances . . . . . . . . . . . . . . . . . . . . . . 262
5.3.4 Determining the Confidence Interval

for the Population Variance . . . . . . . . . . . . . . . . . . . . 262
5.3.5 Comparing Two Sample Variances . . . . . . . . . . . . . . 264
5.3.6 Comparing Histogrammed Data to a Known

Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
5.3.7 Comparing Two Sets of Histogrammed Data . . . . . . . 267
5.3.8 Kolmogorov–Smirnov Test . . . . . . . . . . . . . . . . . . . . 267

5.4 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
5.4.1 Linear Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 270
5.4.2 Non-parametric Correlation . . . . . . . . . . . . . . . . . . . . 271

5.5 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
5.5.1 Fitting a Polynomial, Straight Line, or Constant . . . . . 272
5.5.2 Generalized Linear Regression by Using SVD . . . . . . 280
5.5.3 Robust Methods for One-Dimensional

Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
5.6 Non-linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
5.7 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

5.7.1 The Basic Method . . . . . . . . . . . . . . . . . . . . . . . . . . 287
5.7.2 Principal Component Multiple Regression . . . . . . . . . 290

Contents xv

simon.sirca@fmf.uni-lj.si



5.8 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 292
5.8.1 Principal Components by Diagonalizing

the Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . 294
5.8.2 Standardization of Data for PCA . . . . . . . . . . . . . . . . 296
5.8.3 Principal Components from the SVD

of the Data Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 297
5.8.4 Improvements of PCA: Non-linearity, Robustness . . . 297

5.9 Cluster Analysis H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
5.9.1 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . 299
5.9.2 Partitioning Methods: k-Means . . . . . . . . . . . . . . . . . 302
5.9.3 Gaussian Mixture Clustering and the EM

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
5.9.4 Spectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

5.10 Linear Discriminant Analysis H . . . . . . . . . . . . . . . . . . . . . . . . 307
5.10.1 Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . 308
5.10.2 Logistic Discriminant Analysis . . . . . . . . . . . . . . . . . 310
5.10.3 Assignment to Multiple Classes . . . . . . . . . . . . . . . . . 311

5.11 Canonical Correlation Analysis H . . . . . . . . . . . . . . . . . . . . . . 311
5.12 Factor Analysis H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

5.12.1 Determining the Factors and Weights from
the Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . 314

5.12.2 Standardization of Data and Robust Factor
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

5.13 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.13.1 Multiple Regression . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.13.2 Nutritional Value of Food . . . . . . . . . . . . . . . . . . . . . 319
5.13.3 Discrimination of Radar Signals from Ionospheric

Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
5.13.4 Canonical Correlation Analysis of Objects

in the CDFS Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

6 Modeling and Analysis of Time Series . . . . . . . . . . . . . . . . . . . . . . 325
6.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

6.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
6.1.2 Generation of Random Numbers . . . . . . . . . . . . . . . . 327

6.2 Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
6.2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

6.3 Stable Distributions and Random Walks . . . . . . . . . . . . . . . . . . 332
6.3.1 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . 332
6.3.2 Stable Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 332

xvi Contents

simon.sirca@fmf.uni-lj.si



6.3.3 Generalized Central Limit Theorem . . . . . . . . . . . . . . 335
6.3.4 Discrete-Time Random Walks . . . . . . . . . . . . . . . . . . 336
6.3.5 Continuous-Time Random Walks . . . . . . . . . . . . . . . 339

6.4 Markov Chains H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
6.4.1 Discrete-Time or Classical Markov Chains . . . . . . . . . 341
6.4.2 Continuous-Time Markov Chains . . . . . . . . . . . . . . . 345

6.5 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
6.5.1 Types of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
6.5.2 Generation of Noise . . . . . . . . . . . . . . . . . . . . . . . . . 351

6.6 Time Correlation and Auto-correlation . . . . . . . . . . . . . . . . . . . 353
6.6.1 Sample Correlations of Signals . . . . . . . . . . . . . . . . . 355
6.6.2 Representation of Time Correlations . . . . . . . . . . . . . 357
6.6.3 Fast Computation of Discrete Sample

Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
6.7 Auto-regression Analysis of Discrete-Time Signals H . . . . . . . . 360

6.7.1 Auto-regression (AR) Model . . . . . . . . . . . . . . . . . . . 360
6.7.2 Application of AR Models . . . . . . . . . . . . . . . . . . . . 363
6.7.3 Estimate of the Fourier Spectrum . . . . . . . . . . . . . . . 366

6.8 Independent Component Analysis H . . . . . . . . . . . . . . . . . . . . 369
6.8.1 Estimate of the Separation Matrix and the FastICA

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
6.9 State-Space Reconstruction H . . . . . . . . . . . . . . . . . . . . . . . . . 374

6.9.1 Establishing the Optimal Time Delay . . . . . . . . . . . . . 377
6.9.2 Determining the Embedding Dimension . . . . . . . . . . . 378

6.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
6.10.1 Logistic Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
6.10.2 Diffusion and Chaos in the Standard Map . . . . . . . . . 383
6.10.3 Phase Transitions in the Two-Dimensional Ising

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
6.10.4 Independent Component Analysis . . . . . . . . . . . . . . . 386

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

7 Initial-Value Problems for ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
7.1 Evolution Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
7.2 Explicit Euler’s Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
7.3 Explicit Methods of the Runge–Kutta Type . . . . . . . . . . . . . . . 395
7.4 Errors of Explicit Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

7.4.1 Discretization and Round-Off Errors . . . . . . . . . . . . . 397
7.4.2 Consistency, Convergence, Stability . . . . . . . . . . . . . 398
7.4.3 Richardson Extrapolation . . . . . . . . . . . . . . . . . . . . . 399
7.4.4 Embedded Methods . . . . . . . . . . . . . . . . . . . . . . . . . 400
7.4.5 Automatic Step-Size Control . . . . . . . . . . . . . . . . . . . 402

Contents xvii

simon.sirca@fmf.uni-lj.si



7.5 Stability of One-Step Methods . . . . . . . . . . . . . . . . . . . . . . . . . 403
7.6 Extrapolation Methods H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
7.7 Multi-step Methods H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

7.7.1 Predictor-Corrector Methods . . . . . . . . . . . . . . . . . . . 409
7.7.2 Stability of Multi-step Methods . . . . . . . . . . . . . . . . . 410
7.7.3 Backward Differentiation Methods . . . . . . . . . . . . . . . 412

7.8 Conservative Second-Order Equations . . . . . . . . . . . . . . . . . . . 413
7.8.1 Runge–Kutta–Nyström Methods . . . . . . . . . . . . . . . . 414
7.8.2 Multi-step Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 415

7.9 Implicit Single-Step Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 416
7.9.1 Solution by Newton’s Iteration . . . . . . . . . . . . . . . . . 418
7.9.2 Rosenbrock Linearization . . . . . . . . . . . . . . . . . . . . . 420

7.10 Stiff Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
7.10.1 Eigenvalue Characterization of Stiffness . . . . . . . . . . . 423
7.10.2 Stiffness and Pseudospectra . . . . . . . . . . . . . . . . . . . . 424
7.10.3 Automatic Stiffness Detection . . . . . . . . . . . . . . . . . . 425

7.11 Implicit Multi-step Methods H . . . . . . . . . . . . . . . . . . . . . . . . 427
7.12 Geometric Integration H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

7.12.1 Preservation of Invariants . . . . . . . . . . . . . . . . . . . . . 429
7.12.2 Preservation of the Symplectic Structure . . . . . . . . . . 432
7.12.3 Reversibility and Symmetry . . . . . . . . . . . . . . . . . . . 433
7.12.4 Modified Hamiltonians and Equations of Motion . . . . 434

7.13 Lie-Series Integration H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
7.13.1 Taylor Expansion of the Trajectory . . . . . . . . . . . . . . 437

7.14 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
7.14.1 Time Dependence of Filament Temperature . . . . . . . . 441
7.14.2 Oblique Projectile Motion with Drag Force

and Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
7.14.3 Influence of Fossil Fuels on Atmospheric

CO2 Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
7.14.4 Synchronization of Globally Coupled Oscillators . . . . 444
7.14.5 Excitation of Muscle Fibers . . . . . . . . . . . . . . . . . . . 446
7.14.6 Restricted Three-Body Problem (Arenstorf Orbits) . . . 448
7.14.7 Lorenz System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
7.14.8 Sine Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
7.14.9 Charged Particles in Electric and Magnetic Fields . . . 452
7.14.10 Chaotic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 453
7.14.11 Hydrogen Burning in the pp I Chain . . . . . . . . . . . . . 454
7.14.12 Oregonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
7.14.13 Kepler’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
7.14.14 Northern Lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
7.14.15 Galactic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 459

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

xviii Contents

simon.sirca@fmf.uni-lj.si



8 Boundary-Value Problems for ODE . . . . . . . . . . . . . . . . . . . . . . . . 463
8.1 Difference Methods for Scalar Boundary-Value Problems . . . . . 464
8.2 Difference Methods for Systems of Boundary-Value

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
8.2.1 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
8.2.2 Schemes of Higher Orders . . . . . . . . . . . . . . . . . . . . 474

8.3 Shooting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
8.3.1 Second-Order Linear Equations . . . . . . . . . . . . . . . . . 477
8.3.2 Systems of Linear Second-Order Equations . . . . . . . . 479
8.3.3 Non-linear Second-Order Equations . . . . . . . . . . . . . . 480
8.3.4 Systems of Non-linear Equations . . . . . . . . . . . . . . . . 482
8.3.5 Multiple (Parallel) Shooting . . . . . . . . . . . . . . . . . . . 484

8.4 Asymptotic Discretization Schemes H . . . . . . . . . . . . . . . . . . . 487
8.4.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

8.5 Collocation Methods H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
8.5.1 Scalar Linear Second-Order Boundary-Value

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
8.5.2 Scalar Linear Boundary-Value Problems

of Higher Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
8.5.3 Scalar Non-linear Boundary-Value Problems

of Higher Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
8.5.4 Systems of Boundary-Value Problems . . . . . . . . . . . . 502

8.6 Weighted-Residual Methods H . . . . . . . . . . . . . . . . . . . . . . . . 502
8.7 Boundary-Value Problems with Eigenvalues . . . . . . . . . . . . . . . 505

8.7.1 Transformation to Liouville Normal Form . . . . . . . . . 505
8.7.2 Properties of Eigenvalues . . . . . . . . . . . . . . . . . . . . . 506
8.7.3 Properties of Eigenfunctions . . . . . . . . . . . . . . . . . . . 507
8.7.4 Solution by Difference Methods . . . . . . . . . . . . . . . . 508
8.7.5 Shooting Methods with Prüfer Transformation . . . . . . 511
8.7.6 Pruess Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
8.7.7 Singular Sturm–Liouville Problems . . . . . . . . . . . . . . 518
8.7.8 Eigenvalue-Dependent Boundary Conditions . . . . . . . 519

8.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
8.8.1 Gelfand–Bratu Equation . . . . . . . . . . . . . . . . . . . . . . 520
8.8.2 Measles Epidemic . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
8.8.3 Diffusion-Reaction Kinetics in a Catalytic Pellet . . . . . 522
8.8.4 Deflection of a Beam with Inhomogeneous

Elastic Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
8.8.5 A Boundary-Layer Problem . . . . . . . . . . . . . . . . . . . 524
8.8.6 Small Oscillations of an Inhomogeneous String . . . . . 526
8.8.7 One-Dimensional Schrödinger Equation . . . . . . . . . . . 527
8.8.8 A Fourth-Order Eigenvalue Problem . . . . . . . . . . . . . 528

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Contents xix

simon.sirca@fmf.uni-lj.si



9 Difference Methods for One-Dimensional PDE . . . . . . . . . . . . . . . . 533
9.1 Discretization of the Differential Equation . . . . . . . . . . . . . . . . 535
9.2 Discretization of Initial and Boundary Conditions . . . . . . . . . . . 537
9.3 Consistency H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
9.4 Implicit Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
9.5 Stability and Convergence H . . . . . . . . . . . . . . . . . . . . . . . . . . 542

9.5.1 Initial-Value Problems . . . . . . . . . . . . . . . . . . . . . . . 542
9.5.2 Initial-Boundary-Value Problems . . . . . . . . . . . . . . . . 545

9.6 Energy Estimates and Theorems on Maxima H . . . . . . . . . . . . 547
9.6.1 Energy Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
9.6.2 Theorems on Maxima . . . . . . . . . . . . . . . . . . . . . . . . 549

9.7 Higher Order Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
9.8 Hyperbolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

9.8.1 Explicit Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
9.8.2 Implicit Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
9.8.3 Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

9.9 Non-linear Equations and Equations of Mixed Type H . . . . . . . 557
9.10 Dispersion and Dissipation H . . . . . . . . . . . . . . . . . . . . . . . . . 561
9.11 Systems of Hyperbolic and Parabolic PDE H . . . . . . . . . . . . . . 563
9.12 Conservation Laws and High-Resolution Schemes H . . . . . . . . 567

9.12.1 High-Resolution Schemes . . . . . . . . . . . . . . . . . . . . . 569
9.12.2 Linear Problem vt þ cvx ¼ 0 . . . . . . . . . . . . . . . . . . . 571
9.12.3 Non-linear Conservation Laws of the Form

vt þ ½FðvÞ'x ¼ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
9.13 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

9.13.1 Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 572
9.13.2 Initial-Boundary Value Problem for vt þ cvx ¼ 0 . . . . 573
9.13.3 Dirichlet Problem for a System of Non-linear

Hyperbolic PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
9.13.4 Second-Order and Fourth-Order Wave Equations . . . . 575
9.13.5 Burgers Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
9.13.6 The Shock-Tube Problem . . . . . . . . . . . . . . . . . . . . . 578
9.13.7 Korteweg-de Vries Equation . . . . . . . . . . . . . . . . . . . 579
9.13.8 Non-stationary Schrödinger Equation . . . . . . . . . . . . . 581
9.13.9 Non-stationary Cubic Schrödinger Equation . . . . . . . . 583

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

10 Difference Methods for PDE in Several Dimensions . . . . . . . . . . . . 587
10.1 Parabolic and Hyperbolic PDE . . . . . . . . . . . . . . . . . . . . . . . . 587

10.1.1 Parabolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . 587
10.1.2 Explicit Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
10.1.3 Crank–Nicolson Scheme . . . . . . . . . . . . . . . . . . . . . . 591
10.1.4 Alternating Direction Implicit Schemes . . . . . . . . . . . 591

xx Contents

simon.sirca@fmf.uni-lj.si



10.1.5 Three Space Dimensions . . . . . . . . . . . . . . . . . . . . . . 594
10.1.6 Hyperbolic Equations . . . . . . . . . . . . . . . . . . . . . . . . 595
10.1.7 Explicit Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
10.1.8 Schemes for Equations in the Form of Conservation

Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
10.1.9 Implicit and ADI Schemes . . . . . . . . . . . . . . . . . . . . 597

10.2 Elliptic PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
10.2.1 Dirichlet Boundary Conditions . . . . . . . . . . . . . . . . . 598
10.2.2 Neumann Boundary Conditions . . . . . . . . . . . . . . . . . 600
10.2.3 Mixed Boundary Conditions . . . . . . . . . . . . . . . . . . . 600
10.2.4 Iterative Solution Methods: Relaxation . . . . . . . . . . . . 601
10.2.5 Iterative Solution Methods: Conjugate Gradients . . . . 605

10.3 High-Resolution Schemes H . . . . . . . . . . . . . . . . . . . . . . . . . . 606
10.4 Physically Motivated Discretizations . . . . . . . . . . . . . . . . . . . . 609

10.4.1 Two-Dimensional Diffusion Equation in Polar
Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

10.4.2 Two-Dimensional Poisson Equation in Polar
Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

10.5 Boundary Element Method H . . . . . . . . . . . . . . . . . . . . . . . . . 613
10.6 Finite Element Method H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

10.6.1 One Space Dimension . . . . . . . . . . . . . . . . . . . . . . . . 618
10.6.2 Two Space Dimensions . . . . . . . . . . . . . . . . . . . . . . . 622

10.7 Mimetic Discretizations H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
10.8 Multi-grid and Mesh-Free Methods H . . . . . . . . . . . . . . . . . . . 627

10.8.1 A Mesh-Free Method Based on Radial Basis
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

10.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
10.9.1 Two-Dimensional Diffusion Equation . . . . . . . . . . . . 630
10.9.2 Non-linear Diffusion Equation . . . . . . . . . . . . . . . . . . 632
10.9.3 Two-Dimensional Poisson Equation . . . . . . . . . . . . . . 634
10.9.4 High-Resolution Schemes for the Advection

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
10.9.5 Two-Dimensional Diffusion Equation in Polar

Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
10.9.6 Two-Dimensional Poisson Equation in Polar

Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
10.9.7 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . 638
10.9.8 Boundary Element Method for the

Two-Dimensional Laplace Equation . . . . . . . . . . . . . . 639
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

Contents xxi

simon.sirca@fmf.uni-lj.si



11 Spectral Methods for PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
11.1 Spectral Representation of Spatial Derivatives . . . . . . . . . . . . . 645

11.1.1 Fourier Spectral Derivatives . . . . . . . . . . . . . . . . . . . 645
11.1.2 Legendre Spectral Derivatives . . . . . . . . . . . . . . . . . . 648
11.1.3 Chebyshev Spectral Derivatives . . . . . . . . . . . . . . . . . 649

11.2 Galerkin Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
11.2.1 Fourier–Galerkin . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
11.2.2 Legendre–Galerkin . . . . . . . . . . . . . . . . . . . . . . . . . . 656
11.2.3 Chebyshev–Galerkin . . . . . . . . . . . . . . . . . . . . . . . . . 658
11.2.4 Two Space Dimensions . . . . . . . . . . . . . . . . . . . . . . . 659
11.2.5 Non-stationary Problems . . . . . . . . . . . . . . . . . . . . . . 660

11.3 Tau Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
11.3.1 Stationary Problems . . . . . . . . . . . . . . . . . . . . . . . . . 663
11.3.2 Non-stationary Problems . . . . . . . . . . . . . . . . . . . . . . 665

11.4 Collocation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
11.4.1 Stationary Problems . . . . . . . . . . . . . . . . . . . . . . . . . 667
11.4.2 Non-stationary Problems . . . . . . . . . . . . . . . . . . . . . . 668
11.4.3 Spectral Elements: Collocation with

B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
11.5 Non-linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
11.6 Time Integration H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
11.7 Semi-infinite and Infinite Definition Domains H . . . . . . . . . . . . 676
11.8 Complex Geometries H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
11.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

11.9.1 Galerkin Methods for the Helmholtz Equation . . . . . . 677
11.9.2 Galerkin Methods for the Advection Equation . . . . . . 677
11.9.3 Galerkin Method for the Diffusion Equation . . . . . . . . 679
11.9.4 Galerkin Method for the Poisson Equation:

Poiseuille Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
11.9.5 Legendre Tau Method for the Poisson Equation . . . . . 682
11.9.6 Collocation Methods for the Diffusion Equation I . . . . 684
11.9.7 Collocation Methods for the Diffusion Equation II . . . 686
11.9.8 Burgers Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 687

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

12 Inverse and Ill-Posed Problems H . . . . . . . . . . . . . . . . . . . . . . . . . . 691
12.1 Classification of Inverse Problems . . . . . . . . . . . . . . . . . . . . . . 693
12.2 Generalized Solutions of Au ¼ f . . . . . . . . . . . . . . . . . . . . . . . 695

12.2.1 Compact Operators and Their Singular Value
Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

12.2.2 The Pseudoinverse of Compact Operators . . . . . . . . . 698
12.3 Regularization of Linear Inverse Problems . . . . . . . . . . . . . . . . 699

12.3.1 Truncated Singular Value Decomposition . . . . . . . . . . 701

xxii Contents

simon.sirca@fmf.uni-lj.si



12.3.2 Tikhonov Regularization . . . . . . . . . . . . . . . . . . . . . . 701
12.3.3 Landweber Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 703
12.3.4 Conjugate Gradients Method Applied

to the Normal Equation . . . . . . . . . . . . . . . . . . . . . . . 706
12.3.5 Variational Regularization . . . . . . . . . . . . . . . . . . . . . 709
12.3.6 Regularization of Fourier-Transform-Based

Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710
12.3.7 Determination of the Optimal Regularization

Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
12.3.8 Regularization of Non-linear Inverse Problems . . . . . . 714

12.4 Solution of Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . 715
12.4.1 Fredholm Equations of the Second Kind . . . . . . . . . . 716
12.4.2 Volterra Equations of the Second Kind . . . . . . . . . . . 718
12.4.3 Fredholm Equations of the First Kind . . . . . . . . . . . . 719
12.4.4 Volterra Equations of the First Kind, Smooth

Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
12.4.5 Volterra Equations of the First Kind, Unbounded

Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724
12.4.6 The Radon Transformation and Its Inverse . . . . . . . . . 725

12.5 Inverse Sturm–Liouville Problems . . . . . . . . . . . . . . . . . . . . . . 728
12.5.1 Information Needed to Recover qðxÞ . . . . . . . . . . . . . 729
12.5.2 The Gelfand–Levitan Method . . . . . . . . . . . . . . . . . . 729
12.5.3 Successive Approximations . . . . . . . . . . . . . . . . . . . . 731
12.5.4 Quasi-Newton Method . . . . . . . . . . . . . . . . . . . . . . . 733
12.5.5 Shooting Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 734

12.6 Inverse Problems for Partial Differential Equations . . . . . . . . . . 737
12.6.1 Retrospective Inverse Problem for the Heat

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
12.6.2 Reconstructing the Source Term in the Heat

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
12.6.3 Inverse Source Problems for the Wave Equation . . . . 743
12.6.4 Recovering the Potential in the String Equation . . . . . 746
12.6.5 Inverse Scattering Problem . . . . . . . . . . . . . . . . . . . . 746

12.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
12.7.1 Image Deblurring . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
12.7.2 Gravitational Pull of Circularly Distributed Mass . . . . 755
12.7.3 Polymer Sedimentation in a Centrifuge . . . . . . . . . . . 756
12.7.4 Discrete Radon Transformation and Its Inverse . . . . . 757
12.7.5 Reconstruction of the Potential from Two

Sturm–Liouville Spectra . . . . . . . . . . . . . . . . . . . . . . 759

Contents xxiii

simon.sirca@fmf.uni-lj.si



12.7.6 Identifying the Source Term in the Heat
Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

12.7.7 Reconstructing the Scatterer from the Far-Field
Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

Appendix A: Mathematical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767

Appendix B: Standard Numerical Data Types . . . . . . . . . . . . . . . . . . . . . 781

Appendix C: Generation of Pseudorandom Numbers . . . . . . . . . . . . . . . 789

Appendix D: Convergence Theorems for Iterative Methods . . . . . . . . . . 805

Appendix E: Numerical Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809

Appendix F: Stable Numerical Differentiation . . . . . . . . . . . . . . . . . . . . . 821

Appendix G: Fixed Points and Stability H . . . . . . . . . . . . . . . . . . . . . . . . 825

Appendix H: Construction of Symplectic Integrators H . . . . . . . . . . . . . 833

Appendix I: Transforming PDE to Systems of ODE:
Two Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839

Appendix J: Numerical Libraries, Auxiliary Tools, and Languages . . . . 845

Appendix K: Measuring Program Execution Times on Linux
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865

xxiv Contents

simon.sirca@fmf.uni-lj.si



10 1 Basics of Numerical Analysis

1.2.2 Rational (Padé) Approximation

Suppose that, on some interval, we wish to effectively approximate a function f
possessing a power expansion

f (z) =
∞∑

k=0

ckzk . (1.10)

A Padé approximation of f is a rational function with a numerator of degree L and
denominator of degree M , determined such that its power expansion matches the
series (1.10) up to including the power L + M . In other words, if we can find a
polynomial PL of degree L and QM of degree M such that

f (z) = PL(z)
QM(z)

+O(zL+M+1) , QM(0) = 1 ,

then

[L/M] f (z) =
PL(z)
QM(z)

= a0 + a1z + a2z2 + · · · + aLzL

b0 + b1z + b2z2 + · · · + bMzM
, b0 = 1 , (1.11)

defines a Padé approximation of order (L ,M) of the function f . The coefficients ak
and bk can be determined by equating the approximation [L/M] f with the power
series for f and reading off the coefficients of the same powers of x :

(
b0 + b1z + · · · + bMzM

) (
c0 + c1z + · · ·

)
= a0 + a1z + · · · + aL z

L +O(zL+M+1) .

By comparing the terms with powers zL+1, zL+2, . . . , zL+M we obtain a system of
equations for the coefficients bk of the denominator QM , while by comparing terms
with powers z0, z1, . . . , zL we obtain explicit equations for the coefficients ak of the
numerator PL . For example, with L = M = 3, we get




c3 c2 c1
c4 c3 c2
c5 c4 c3








b1
b2
b3



 =




−c4
−c5
−c6



 ,





a0
a1
a2
a3



 =





c0 0 0 0
c1 c0 0 0
c2 c1 c0 0
c3 c2 c1 c0









1
b1
b2
b3



 .

Since b0 = 1, the first line of the equation on the right tells us that the zeroth coeffi-
cient of PL is equal to the zeroth coefficient of the power expansion of the function,
a0 = c0. The bulk of the work is hidden in the matrix system on the left. Large
Padé systems of this type are solved by robust algorithms like Gauss elimination
with complete pivoting because, in most cases, we are interested in relatively low
degrees L and M and because accuracy takes precedence over speed. In the sense of

simon.sirca@fmf.uni-lj.si



1.2 Approximation of Expressions 11

properties mentioned in the following, diagonal Padé approximations, in which
L = M , are the most efficient.

Example (Adapted from [15], p. 4.) The function

f (z) =
√
1+ z/2
1+ 2z

=
∞∑

k=0

ckzk = 1− 3
4
z + 39

32
z2 − 267

128
z3 + 7563

2048
z4 − · · ·

(1.12)
has the first two diagonal Padé approximations

[1/1] f (z) =
1+ 7

8 z

1+ 13
8 z

, [2/2] f (z) =
1+ 17

8 z + 61
64 z

2

1+ 23
8 z + 121

64 z2
.

(Compute them!) The comparison of two power expansions and these Padé approx-
imations is shown in Fig. 1.3, revealing a most pleasant property: if some power
series converges to a function with a convergence radius ρ, that is, for all |z| < ρ
and 0 < ρ <∞, then an appropriately chosen Padé approximation converges to f
for all z ∈ R, where the domain R is larger than the domain defined by |z| < ρ.
The function f in example (1.12) has the limit limz→∞ f (z) = 1/2 and its power
series has a convergence radius of only ρ = 1/2. On the other hand, both lowest-
order diagonal Padé approximations are stable at infinity. Moreover, when the order
of the approximation is increased, the correct limit 1/2 is approached rapidly:
limz→∞[1/1] f (z) = 7/13 ≈ 0.5385 and limz→∞[2/2] f (z) = 61/121 ≈ 0.5041. In
other words, the Padé approximation tells us something about how the function
behaves outside of the convergence radius of its power series, and ensures better
asymptotics. &

Fig. 1.3 Comparison of power expansions of degree two and four for the function (1.12) and
the diagonal Padé approximations [1/1] f and [2/2] f . The curves for f and [2/2] f are barely
distinguishable in this plot

simon.sirca@fmf.uni-lj.si



1.4 Summation of Finite and Infinite Series 35

Substantial work has been done in the minimization of summation errors (see [8,
38–40]). Here we list three most widely used summation methods that do not require
more than O(n) of operations.

Simple recursive summation Assume that we have the values {ak}nk=0 and wish
to compute their sum S =∑n

k=0 ak . Most obviously, this can be accomplished by
computing Ŝ = (. . . (((a0 ⊕ a1)⊕ a2)⊕ a3) . . .⊕ an−1)⊕ an , in a loop

Input: real numbers a0, a1, . . . , an
Ŝ = a0;
for k = 1 step 1 to n do

Ŝ = Ŝ + ak ;
end
Output: Ŝ is the numerical sum of numbers ak

The deviation of the numerical sum Ŝ from the exact sum S strongly depends on how
ak are sorted. If they are unsorted, we have

∣∣S − Ŝ
∣∣ ≤ εM

2
n

n∑

k=0

|ak | +O
(
ε2M
)
, (1.57)

where εM is the arithmetic precision (see p. 2) [39]. In simple summation one can
therefore expect a loss of up to log10 n significant digits. The estimate for the upper
limit of the error (not the error itself) is smallest when the terms are sorted as |ak | ≤
|ak+1|. Sorting requires at least O(n log n) additional operations.

Kahan’s algorithm Amuch better procedure to sum a series, by which the effect of
rounding errors is greatly diminished, was proposed by Kahan [41]:

Input: real numbers a0, a1, . . . , an
Ŝ = a0;
c = 0;
for k = 1 step 1 to n do

y = ak − c;
t = Ŝ + y;
c = (t − Ŝ)− y; // do not omit brackets
Ŝ = t ;

end
Output: Ŝ is the numerical sum of numbers ak

Algebraically, the value of c is zero, but in finite arithmetic it represents a large part
of the lost precision when summing t = Ŝ + y. It is added to the sum in the next
step and by doing this, it compensates the rounding error from the previous step. The
deviation of the numerical sum from the exact one satisfies

∣∣S − Ŝ
∣∣ ≤

(
εM +O

(
nε2M

)) n∑

k=0

|ak | . (1.58)

simon.sirca@fmf.uni-lj.si

÷

⑤



36 1 Basics of Numerical Analysis

According to (1.58), Kahan’s summation is more precise than simple summation for
nεM/2 ≤ 1. In practice, this actually applies to even larger n (see Fig. 1.9). In the
implementation of the algorithm we should make sure that the compiler does not
simplify it, since the essence of its strength is hidden in the rules of floating-point
arithmetic. In C and C++ variables should be declared volatile.

Recursive summation of pairs Summation is an associative and commutative oper-
ation between real numbers. Algebraically, the order of summation is thus irrelevant,
and this fact is exploited by the Linz’s procedure [42]. In the first step we sum the
consecutive pairs of terms and obtain a new series. In this series we again sum the
consecutive pairs and repeat this (r = )log2 n*)-times, until we are left with only one
term, which represents the final sum:

Input: real numbers a0, a1, . . . , an−1, where n = 2r , r ∈ N
m = m ′ = n/2;
for k = 0 step 1 to m − 1 do

S0,k = a2k + a2k+1;
end
for j = 1 step 1 to r − 1 do

m ′ = m ′/2;
for k = 0 step 1 to m ′ − 1 do

Sj,k = Sj−1,2k + Sj−1,2k+1;
end

end
Output: Ŝ = Sr−1,0 is the numerical sum of numbers ak

Because each term ak in the sum is touched only r -times, the deviation of the sum Ŝ
from the exact value S is much smaller than in simple recursive summation:

∣∣S − Ŝ
∣∣ ≤ εM

2
log2 n

n−1∑

k=0

|ak |

(compare to (1.57)). For the intermediate sums Sj,k we need additional computer
memory to store n/2 real numbers, which is a bit wasteful compared to the simple
and Kahan’s summation which require only O(1) of memory. Linz’s algorithm can
be improved by compensating the numerical error and selecting the pairs in a more
intricate manner. For details, consult [43].

In all three methods we specified the upper bounds for |S − Ŝ|; for a given set of
numbers {ak}, all methods may be equally precise. In general, we recommend the
Linz’s method unless pairs can not be formed or this does not make much sense (for
example, for relatively short series). On the other hand, the Kahan’s method, which
is both simple and precise, never fails to enchant (see Fig.1.9). For very precise
summation, we resort to more sophisticated but slower methods like distillation
algorithms described in [38, 44, 45].

simon.sirca@fmf.uni-lj.si



1.4 Summation of Finite and Infinite Series 37

Fig. 1.9 Rounding errors in summing series with many terms. Shown is the absolute error of the
numerical partial sums Sn =∑n

k=0(−1)k/(k + 1) with respect to the limiting value S∞ = log 2.
[Left] Summation in single-precision arithmetic. [Right] Summation in double-precision arith-
metic. The horizontal lines correspond to εM = 1.19 · 10−7 (left) and εM = 2.22 · 10−16 (right) —
see p.2

1.4.3 Acceleration of Convergence

The convergence of the partial sums Sn =
∑n

k=0 ak to the limit S = limn→∞ Sn may
be slow. By “slow”wemean its leading behavior to be |Sn − S| = O(n−p) (power) or
|Sn − S| = O((log n)−p) (logarithmic) where p > 0 is the convergence order. Slow
convergence is not desired since it implies large numerical costs and a potential
accumulation of rounding errors.

We speak of “fast” convergence when it is better than “slow” according to the
definition given above. Ideally, one would like to have exponential (geometric) con-
vergence |Sn − S| = O(an) where a ∈ [0, 1). In many cases, convergence can be
accelerated by transforming the original series into another series that converges
more rapidly. In the following, we describe a few basic approaches. A modern intro-
duction to convergence acceleration with excellent examples and many hints can be
found in [46]; for a more detailed review, see [47].

Richardson extrapolation Assume that we already know the order of convergence
for a series S =∑∞

k=0 ak so that for its partial sums Sn =
∑n

k=0 ak we have

S = Sn +
α

np
+O(n−r ) , r > p > 0 .

We think of the “value of the series” as being the value of the partial sum plus a
correction with the known leading-order behavior α/np. By transforming

T (1)
n = 2pS2n − Sn

2p − 1
= S2n +

S2n − Sn
2p − 1

simon.sirca@fmf.uni-lj.si



38 1 Basics of Numerical Analysis

the term α/np can be eliminated and the terms T (1)
n give us a better estimate for the

sum, for which we obtain S = T (1) +O(n−r ). The very same trick can be repeated
— until this makes sense — by forming new sequences,

T (2)
n = 2p+1T (1)

2n − T (1)
n

2p+1 − 1
, T (3)

n = 2p+2T (2)
2n − T (2)

n

2p+2 − 1
, · · · .

Richardson’s procedure is an example of a linear extrapolation method X , in
which for partial sums Sn and Tn of two series we have X (λSn + µTn) = λX (Sn)+
µX (Tn). It is efficient if the partial sums Sn behave like polynomials in some sequence
hn , that is, Sn = S + c1h

p1
n + c2h

p2
n + · · · or Sn+1 = S + c1h

p1
n+1 + c2h

p2
n+1 + · · · ,

where the ratio hn+1/hn is constant. If this condition is not met, linear extrapolation
may become inefficient or does not work at all. In such cases we resort to semi-linear
or non-linear extrapolation [46].

Aitken’s method Aitken’s method is one of the classical and most widely used
ways to accelerate the convergence by non-linear extrapolation. Assume that we
have a sequence of partial sums Sn with the limit S = limn→∞ Sn . We transform the
sequence Sn into a new sequence

T (1)
n = Sn −

(Sn+1 − Sn)2

Sn+2 − 2Sn+1 + Sn
, n = 0, 1, 2, . . . , (1.59)

where the fraction should be evaluated exactly in the given form in order to minimize
rounding errors. (Check that the transformed sequence (1.59) is identical to the
column ε(n, 2) of the Wynn’s table (1.13).) We repeat the process by using T (1)

n
instead of Sn to form yet another, even more accelerated sequence T (2)

n , and proceed
thus until it continues to make sense as far as the rounding errors are concerned.
Figure1.10 (left) shows the comparison of convergence speeds for the unaccelerated
partial sums Sn and the accelerated sequences T (1)

n , T (2)
n , and T (3)

n .
Aitken’s method is optimally suited for acceleration of linearly convergent

sequences, for which limn→∞(Sn+1 − S)/(Sn − S) = a with −1 ≤ a < 1. Such
sequences originate in numerous numerical algorithms based on finite differences.
In some cases, we apply Aitken’s formula to triplets of partial sums Sn+p, Sn , and
Sn−p, where p > 1, because sometimes the geometric convergence of a series only
becomes apparent at larger p; see also Sect. 2.3 and [48].

Kummer’s acceleration The basic idea of the Kummer’s method of summing a
convergent series S =∑

k ak is to subtract from it another (auxiliary) convergent
series B =∑

k bk with the known limit B, such that

lim
k→∞

ak
bk

= ρ ,= 0 .

simon.sirca@fmf.uni-lj.si



1.4 Summation of Finite and Infinite Series 39

Fig. 1.10 Acceleration of convergence of partial sums. [Left] Aitken’s method for the sum Sn =∑n
k=0(−1)k/(k + 1)with the limit S = limn→∞ Sn = log 2. Shown is the acceleration of this series

with very slow (logarithmic) convergence by three-fold repetition of theAitken’smethod. For typical
series usually a single step of (1.59) suffices. [Right] Kummer’s acceleration of the sums Sn =∑n

k=1 1/k
2 with the limit S = limn→∞ Sn = π2/6 by using the auxiliary series

∑∞
k=1 1/(k(k + 1))

Then the original series can be transformed to

T =
∑

k

ak = ρ
∑

k

bk +
∑

k

(ak − ρbk) = ρB +
∑

k

(
1− ρ

bk
ak

)
ak . (1.60)

The convergence of the series on the right is faster than the convergence of that
on the left since (1− ρbk/ak) tends to zero when k →∞. An example is the sum
S =∑∞

k=1 1/k
2 = π2/6 from which we subtract B =∑∞

k=1 1/(k(k + 1)) = 1, thus
ρ = limk→∞ k(k + 1)/k2 = 1. We use the terms ak and bk , as well as ρ and B, in
(1.60), and get the transformed partial sum

T (1)
n = 1+

∞∑

k=1

(
1− k2

k(k + 1)

)
1
k2

,

which has a faster convergence than the original series. Again, the procedure can be
invoked repeatedly (see [49] and Fig. 1.10 (right)).

1.4.4 Alternating Series

In alternating series the sign of the terms flips periodically,

S = a0 − a1 + a2 − a3 + . . . =
∞∑

k=0

(−1)kak , Sn =
n∑

k=0

(−1)kak .

simon.sirca@fmf.uni-lj.si



40 1 Basics of Numerical Analysis

In physics such examples can be encountered e.g. in electro-magnetism in prob-
lems with oppositely charged particles or currents flowing in opposite directions. An
example is the calculation of the electric potential U (x, y, z) of charges of opposite
signs lying next to each other at distances a along the x-axis:

U (x, y, z) ∝
∞∑

k=−∞

(−1)k
√
(x + ka)2 + y2 + z2

.

Making a monotonous series alternate For realistic physics problems, the results
of series summation may be unpredictable. Simple recursive summation may suffer
from large rounding errors. On the other hand, the acceleration of alternating series
is typically more efficient than the acceleration of series with exclusively positive
(or exclusively negative) terms. A monotonous sequence can be transformed into an
alternating one by using the Van Wijngaarden’s trick:

∞∑

k=0

ak =
∞∑

k=0

(−1)kbk , bk =
∞∑

j=0

2 j a2 j (k+1)−1 .

Euler’s transformation One of the oldest ways to accelerate the convergence of an
alternating sequence by a linear combination of its terms is the Euler transformation.
We rewrite the original sum S =∑

k(−1)kak and its partial sum as

S =
∞∑

k=0

(−1)k !ka0
2k+1

, Sn =
n∑

k=0

(−1)k !ka0
2k+1

, (1.61)

where

!ka0 = (−1)k
k∑

j=0

(−1) j
(
k
j

)
a j .

If there exist N ∈ N andC > 0 such that |!na0| ≤ C for all n > N , the series (1.61)
converges faster than geometrically with

|S − Sn| ≤
C

2n+1
, n > N .

In practical algorithms, we first form the partial sums

s(0)n =
n∑

k=0

(−1)kak , n = 0, 1, . . . , N − 1 ,

and recursively compute the partial Euler transforms

simon.sirca@fmf.uni-lj.si



1.4 Summation of Finite and Infinite Series 41

Fig. 1.11 Examples of acceleration of alternating series. Shown are the partial sums Sn =∑n
k=0(−1)kak without and with acceleration. [Left] Euler’s method (1.62) for ak = 1/(k + 1)

(limit S = limn→∞ Sn = log 2). [Right] Cohen–Villegas–Zagier’s algorithm 1 from p. 43 by
using Chebyshev polynomials (1.66) and algorithm 2a in [51] for ak = 1/(2k + 1) (limit S =
limn→∞ Sn = π/4). To compute the partial sum to ≈ 15 significant digits typically less than
≈ 10− 20 terms of the accelerated series are required

s( j+1)
n = 1

2

(
s( j)n + s( j)n+1

)
, j = 0, 1, . . . . (1.62)

The values Tn ≡ s(n)0 represent the improved (accelerated) approximations of the
partial sums Sn (Fig. 1.11 (left)). The procedure is numerically demanding, since it
requires O(n2) operations and O(n) of memory for a complete transformation of a
series with n terms. It turns out that the optimally precise results are obtained not
by using the transform (1.62) with j = N − 1 and n = 0, but with j = )2N/3* and
n = )N/3*. An efficient implementation is given in [50].

Generalizing the Euler’s method Euler’s transformation can be generalized by
using the theory of measures. In this fresh approach to the summation of alternating
series [51] we assume that for a series

∑∞
k=0(−1)kak there exists a positive function

w such that the series terms ak are its moments on the interval [0, 1],

ak =
∫ 1

0
xkw(x) dx . (1.63)

The sum of the series can then be written as

S =
∞∑

k=0

(−1)kak =
∫ 1

0

( ∞∑

k=0

(−1)k xkw(x)

)

dx =
∫ 1

0

w(x)
1+ x

dx .

(In the final summation formula the weight function does not appear.) In the last step,
we have used the identity

simon.sirca@fmf.uni-lj.si



42 1 Basics of Numerical Analysis

n−1∑

k=0

(−1)k xk = 1− (−x)n
1+ x

, |x | < 1 , (1.64)

in the limit n→∞. We now choose a sequence of polynomials {Pn}, where Pn has
a degree n and Pn(−1) ,= 0. To the sequence {Pn} we assign the numbers

Sn =
1

Pn(−1)

∫ 1

0

Pn(−1)− Pn(x)
1+ x

w(x) dx .

The numbers Sn are linear combinations of the series terms ak . This can be seen by
inserting the expression for a general polynomial Pn(x) =

∑n
k=0 pk(−x)k into the

equation for Sn and observe (1.64) and ak (1.63). We obtain

Sn =
1
dn

n−1∑

k=0

(−1)kc(n)k ak , dn =
n∑

k=0

pk , c(n)k =
n∑

j=k+1

p j .

The Sn defined in this way represent the partial sums of S that converge to S when
n is increased. The difference between the partial sum Sn and the sum S can be
constrained as

∣∣S − Sn
∣∣ ≤ 1

|Pn(−1)|

∫ 1

0

|Pn(x)|
1+ x

w(x) dx ≤ Mn

|Pn(−1)|
|S| ,

where Mn = supx∈[0,1] |Pn(x)| is the maximum value of the polynomial Pn on [0, 1].
The sufficient condition for the convergence of the partial sums Sn to S is therefore
limn→∞ Mn/Pn(−1) = 0. The authors of [51] recommend to choose a sequence of
polynomials {Pn} such that Mn/Pn(−1) converges to zero as quickly as possible.
The following three choices are the most fruitful.

The first type of the polynomials Pn that may cross one’s mind, is

Pn(x) = (1− x)n =
n∑

k=0

(
n
k

)
(−x)k , Pn(−1) = 2n , Mn = 1 .

Namely, the corresponding partial sums are

Sn =
1
2n

n−1∑

k=0

(−1)kc(n)k ak , c(n)k =
n∑

j=k+1

(
n
j

)
, (1.65)

and they are identical to the partial sums of the Euler transform (1.61), except for a
different subscripting (the sums (1.61) with subscript n are equal to the sums (1.65)
with subscript n + 1). By this choice we obtain |S − Sn| ≤ |S|/2n . Faster conver-
gence, |S − Sn| ≤ |S|/3n , can be obtained by using the polynomials

simon.sirca@fmf.uni-lj.si



1.4 Summation of Finite and Infinite Series 43

Pn(x) = (1− 2x)n =
n∑

k=0

2k
(
n
k

)
(−x)k , Pn(−1) = 3n , Mn = 1 .

Here the partial sums have the form

Sn =
1
3n

n−1∑

k=0

(−1)kc(n)k ak , c(n)k =
n∑

j=k+1

2 j
(
n
j

)
.

A third choice is a special family of Chebyshev polynomials, which have other bene-
ficial algebraic properties and are orthogonal.We define these polynomials implicitly
by Pn(sin2 t) = cos(2nt) or explicitly by

Pn(x) = Tn(1− 2x) =
n∑

j=0

4 j n
n + j

(
n + j
2 j

)
(−x) j ,

where Tn(x) = cos(n arccos x) are the standard Chebyshev polynomials of degree n
on [−1, 1]. The polynomials of this sequence are computed by using the recurrence
Pn+1(x) = 2(1− 2x)Pn(x)− Pn−1(x), which is initiated by P0(x) = 1 and P1(x) =
1− 2x . For polynomials chosen in this way, one can show that Pn(−1) = 1

2 [(3+√
8)n + (3−

√
8)n] and Mn = 1. The partial sums

Sn =
1

Pn(−1)
n−1∑

k=0

(−1)kc(n)k ak , c(n)k =
n∑

j=k+1

4 j n
n + j

(
n + j
2 j

)
, (1.66)

converge to the final sum as

∣∣S − Sn
∣∣ ≤ 2|S|

(3+
√
8)n

<
2|S|

5.828n
,

so we need to sum only n ≈ 1.31 D terms for a precision of D significant digits!
The coefficients c(n)k and other constants can be computed iteratively and the whole
computation of Sn can be implemented in a very compact algorithm [51]

Input: numbers a0, a1, . . . , an−1 of an alternating series
∑n−1

k=0(−1)kak
d = (3+

√
8)n; d = (d + 1/d)/2;

b = −1; c = −d; s = 0;
for k = 0 step 1 to n − 1 do

c = b − c;
s = s + c ak ;
b = (k + n)(k − n)b/((k + 1/2)(k + 1));

end
Output: partial sum Sn = s/d

simon.sirca@fmf.uni-lj.si



44 1 Basics of Numerical Analysis

This algorithm requiresO(1) of memory andO(n) of CPU. Similar results can be
obtained by using other families of orthogonal polynomials; the paper [51] describes
further algorithms in which the coefficients of the partial sums can not be generated
as easily, but yield even faster convergence. For many types of sequences, these
algorithms allow us to achieve convergence rates of |S − Sn| ≤ |S|/7.89n , in some
cases even the breath-taking |S − Sn| ≤ |S|/17.93n . However, they require O(n) of
memory and O(n2) of CPU.

1.4.5 Levin’s Transformations

Levin’s transformations [52] are among the most generally useful, handy, and effi-
cient methods to accelerate the convergence of series by semi-linear extrapolation.
We implement them by using divided differences which are computed recursively:

δk fn =
δk−1 fn+1 − δk−1 fn

tn+k − tn
, δ0 fn = fn ,

where tn = (n + n0)−1 andwe usually take n0 = 0 or n0 = 1. To compute the extrap-
olated partial sums we need the partial sums Sn and auxiliary functions ψ which
depend on the terms of the sequence and its character (monotonous or alternating).
We use the formula

Sk,n = δk
(

Sn
ψ(n)

)[
δk
(

1
ψ(n)

)]−1
, k = 1, 2, . . . . (1.67)

and take Sk,0 (with n0 = 1) or Sk,1 (with n0 = 0) as the extrapolated sum. Levin’s
transformations differ by the functional forms of ψ. The best known are

T : ψ(n) = an , U : ψ(n) = (n + n0)an , W : ψ(n) = a2n/(an+1 − an) .

The T -transformation is best for alternating series inwhich the partial sums behave as
Sn ∼ rn . The U -transformation works well with monotonous sequences for which
Sn ∼ n−r applies. The W -transformation can be used in either case regardless of
the series type, although it is more sensitive to rounding errors than the U - and
T -methods. The U -method is recommended [46] as a reliable way to speed up the
summation of any series. The U -transformation, including the extrapolation to the
limit and providing the remainder estimates, is implemented in the GSL library [53]
in the gsl_sum_levin_u_accel() function.

Example Let us sum the slowly converging series Sn =
∑n

k=0(−1)k/(k + 1) with
the limit S = limn→∞ Sn = log 2.We choose the Levin’s T -method and n0 = 0, thus
tn = n−1 and ψ(n) = (−1)n/(n + 1). By using (1.67) with n = 1 we obtain

simon.sirca@fmf.uni-lj.si



2.1 Scalar Equations 67

x

f(x)
1

2

Fig. 2.1 Searching for the approximations of the zero by using the Newton-Raphson’s method. At
each point of the iteration (xk , f (xk)) we compute the tangent to the function. The intersection of
the tangent with the abscissa is the new approximation of the zero xk+1. See also Fig. 2.2 (right)

The sum φn(x) can be used in the iteration of a method of order n + 1 like

xk+1 = φn(xk) ,

as advertised at the outset (2.2). This iteration operates equally well on the real axis
and in the complex plane, and can therefore be used to seek both real and complex
roots. (If f is real and we wish to find a complex root, the initial approximation also
needs to be complex.) The most important representatives of this family of methods
are the Newton-Raphson’s method (n = 1),

xk+1 = xk −
f (xk)
f ′(xk)

(2.7)

(Fig. 2.1), and the modified Newton-Raphson’s method (n = 2), with the iteration

xk+1 = xk −
f (xk)
f ′(xk)

− f ′′(xk) f (xk)2

2 f ′(xk)3
.

Methods of higher orders can be constructed by augmenting the iteration function,
but their applicability is limited as the numerical computation, or even the existence
of higher derivatives of f , are questionable. Methods of orders greater than two are
rarely used.

The Newton-Raphson’s method with the iteration (2.7) is the most simple, gener-
ally useful and explored method from the Newton’s family. The search for the zero
by using this formula is illustrated in Fig. 2.1. Due to this characteristic graphical
interpretation this procedure is also known as the tangent method.

It is clear from this construction that the Newton-Raphson’s iteration has a
quadratic convergence if the derivative f ′(x) exists in some open neighborhood
S of ξ and is continuous and non-zero ( f ′(x) #= 0 ∀S). This can be confirmed by
expanding the iteration formula around ξ in powers of the difference ek = xk − ξ .
We get

simon.sirca@fmf.uni-lj.si



68 2 Solving Non-linear Equations

ek+1 ≈
f ′′(ζ )

2 f ′(xk)
e2k , ζ = ζ(xk) ∈ S .

The method therefore has quadratic convergence when maxx∈S | f ′′(x)| #= 0. The
speed of convergence is essentially driven by the ratio of the second and the first
derivative evaluated at the zero of f . If the zero is multiple, the Newton-Raphson’s
method slows down and becomes only linearly convergent. In such cases, quadratic
convergence can be restored by writing the iteration (2.7) as

xk+1 = xk − m
f (xk)
f ′(xk)

,

where m is the order of the zero of f . If the order of ξ is unknown and there is a
chance that the zero is multiple, one should not try to solve f (x) = 0 but rather

u(x) = 0 , u(x) = f (x)
f ′(x)

.

When u is inserted in (2.7), we obtain an iteration of the form

xk+1 = xk −
f (xk)

f ′(xk)− f (xk) f ′′(xk)/ f ′(xk)
,

which also accommodates multiple zeros.
Under certain assumptions about f and the initial value x0, the Newton-Raphson

sequence is locally convergent, but it does not converge globally (for arbitrary initial
values); see Example below. For some classes of f Newton’s method can be tuned to
become globally convergent [4]. Sufficient conditions for convergence are specified
by Ostrowski theorems (Appendix D).

Example (Adapted from [5]) Kepler’s equation

E = M + ε sin E (2.8)

connects the parameters of the planet’s orbital motion around the Sun: eccentric
anomaly E , average anomaly M , and eccentricity ε =

√
1− b2/a2 (Fig. 2.2 (left)).

The time dependence of M is given by M(t) = 2π(t − tp)/T , where T is the period
and tp is the time of the passage through the perihelion (the point on the elliptic orbit
closest to the Sun). Various forms of analytic solutions exist [1].

Equation (2.8) can be solved by simple iteration, Ek+1 = M + ε sin Ek , which
converges very slowly. It is therefore much better if the equation is rewritten in the
Newton form (2.7) with the function f (E) = E − M − ε sin E . We get

Ek+1 =
M − ε [Ek cos Ek − sin Ek]

1− ε cos Ek
, k = 0, 1, 2, . . . .

simon.sirca@fmf.uni-lj.si



2.1 Scalar Equations 69

Fig. 2.2 Solving Kepler’s equation by Newton’s method. [Left] The definition of the anomaly E .
[Right] Poor convergence of the approximations Ek with a strongly eccentric orbit and bad initial
approximation E0. The function f (E) = E − M − ε sin E is drawn

With a prudent choice of the initial approximation the sequence {Ek} converges very
rapidly: for ε = 0.95,M = 245◦, and the initial approximation E0 = 215◦, we obtain
the solution E ≈ 3.740501878977461 to machine precision in just three steps; the
simple iteration would require 131 steps for the same precision.

For small eccentricities, ε ( 1, Newton’smethod is rather insensitive to the initial
approximation, as in such cases E = M + ε sin E ≈ M , and the simple guess E0 =
M does the job. For large ε, however, the sequence of the approximations {Ek} with
a poorly chosen initial value E0 may diverge. Assume that we always set E0 = M
initially. If (ε,M) = (0.991, 0.13π) or (0.993, 0.13π), the sequence {Ek} converges,
but for the values (0.992, 0.13π) it diverges! Similar behavior can be observed near
(ε,M) = (0.99, 0.2) (Fig. 2.2 (right)). The reason for the divergence is the bad choice
of E0 combined with the tricky form of the function f (E) = E − M − ε sin E with
almost horizontal parts where the tangent to f is “thrown” far away (see the jumps
at k = 1 and k = 4). A good approximation for any ε, which can be used to avoid
the pitfalls seen above, is E0 = π [5]. )
ExampleWeuseNewton’s method to compute the complex roots of z3 − 1 = 0. The
analytic solutions are 1, e i2π/3, and e−i2π/3.We choose the initial approximation z0 =
x0 + i y0 ∈ [−2, 2]× [−2, 2] and observe the value of z at the end of the iteration
zk+1 = zk − f (zk)/ f ′(zk), where f (z) = z3 − 1. Figure 2.3 (left) shows the phase
of the final value of z, while Fig. 2.3 (right) shows the number of steps needed to
achieve convergence to machine precision. )

simon.sirca@fmf.uni-lj.si



70 2 Solving Non-linear Equations

Fig. 2.3 Solving z3 − 1 = 0 by Newton’s method. [Left] The phase of the final value z as a
function of the initial approximation specified by Re z and Im z on the abscissa and the ordinate.
The three shaded areas are the basins of attraction corresponding to the phases 0, 2π/3 ≈ 2.094395,
and −2π/3 ≈ −2.094395 to which the individual initial approximation is “attracted” (see [6] and
Sect. 2.5.8). [Right] The number of iterations needed to achieve convergence, as a function of the
initial approximation

2.1.3 The Secant Method and Its Relatives

Together with bisection, the secant method and its variants are the oldest known
iterative procedures. From the pairs (xk−1, f (xk−1)) and (xk, f (xk))with oppositely
signed f (xk−1) and f (xk) we determine the straight line intersecting the abscissa
at xk+1, and we compute the value of f at this very point, f (xk+1). The process is
repeated on the subinterval on which the function’s values at its boundary points are
oppositely signed, until convergence is achieved.

This method of finding the zero (regula falsi, see below) is just a special case
in the family of methods based on the Newton-Raphson’s iteration where the exact
derivative of the function is replaced by the approximate one:

f ′(x) ≈ f (xk)− f (xk−1)
xk − xk−1

.

When this approximation is inserted in (2.7), we obtain the iteration

xk+1 = xk −
f (xk)(xk − xk−1)
f (xk)− f (xk−1)

= f (xk)xk−1 − f (xk−1)xk
f (xk)− f (xk−1)

. (2.9)

To compute xk+1 we need the information from two previous points, hence this
method can not be written in the one-point form xk+1 = φ(xk). The iteration (2.9)
can be used in various ways which yield the secant method, the method of false
position (regula falsi), and the chord method. Among these, only the secant method

simon.sirca@fmf.uni-lj.si



98 2 Solving Non-linear Equations

2.5.7 The Jenkins–Traub Method

Themost efficient “sure-fire” and “black-box”method currently on themarket,which
is implemented in major software packages like Mathematica, Matlab or the
IMSL library, is the three-stage Jenkins-Traub method [28]. It is well suited for the
computation of zeros of real and complex polynomials and has more than quadratic
order, but it is too complicated to be discussed at the level of this textbook. Even
though the method is globally convergent, it is reported to become unreliable for
degrees higher than n ≈ 50 [29].

2.5.8 The Hubbard–Schleicher–Sutherland Method

Recall the example in Fig. 2.3 where the sensitivity of the Newton’s method to initial
conditions — its lack of global convergence — has been observed. In an exciting
new development [30] it has been proven that it is possible to find all roots of a
degree-n complex polynomial by Newton’s method without recourse to deflation,
starting from a set ofO(n log2 n) initial points (O(n) if all roots are real) that can be
constructed explicitly. The method works for degrees on the order of thousands or
even millions [31], a task not unheard of in modern computer algebra systems and
geometric modeling. In the following we quote the authors’ main result in recipe
form.

We construct a set of initial points In whose main feature is that at least one of
them is in the basin of attraction of every root. It turns out that the points of this set lie
along one or more concentric circles in the complex plane, the outermost of which
has the radius r(1+

√
2), where r is an estimate for the radius of the disc containing

all roots, estimated one way or another or calculated, say, by using (2.19) or (2.20).
The number of required circles is

s = ,0.26632 log n- ,

and we need to place
N = ,8.32547 n log n-

points on each circle. For n ≤ 42, a single circle is needed (s = 1). For n ≤ 1825,
n ≤ 78015 and n ≤ 3 333 550 one needs 2, 3 and 4 circles, respectively. The points
along the circles are evenly spaced in angle. We set

ρ(ν) = r
(
1+

√
2
)(

1− 1
n

)(2ν−1)/4s
, θ j =

2π j
N

,

for ν = 1, 2, . . . , s and j = 0, 1, . . . , N − 1. The initial grid then consists of sN
points ρ(ν) exp(iθ j ). An example of such a grid required to solve

simon.sirca@fmf.uni-lj.si



2.5 Polynomial Equations of a Single Variable: Specific Methods 99

Fig. 2.11 Solving a fifth-degree polynomial equation (2.34) by using the Hubbard-Schleicher-
Sutherland method. [Left] The initial grid I5 consisting of N = 67 points along a single circle
(s = 1) with a radius of ≈ 11.4 and some Newton “trajectories” starting from the points with
angular indices j = 10, 20, 30, 40, 50 and 63, converging on the zeros at Re ξ = 4, 2, 1, 1, 3 and 5,
respectively. [Right] Zoom-in of the region containing the zeros. The numbers indicate the required
number of Newton iterations terminating at a tolerance below 10−6

p(x) =
5∏

k=1

(x − k) = −120+ 274 x − 225 x2 + 85 x3 − 15 x4 + x5 = 0 (2.34)

(n = 5, s = 1, N = 67) is shown in Fig. 2.11 (left).
We then start the Newton’s iteration from each point z0 ∈ In and make it stop

when |zi − zi−1| < ε/n or after at most

K = ,n log(r/ε)-

iterations, where ε is the desired precision of the root. (Typically ε ≈ 10−6 is taken,
with an option for later root refinement.) This condition guarantees that there is at least
one root ξ j for which |zi − ξ j | < ε. If the root ξ j approximated by zi is different from
all previous roots, store it as a valid result, otherwise discard its “trajectory” entirely.
If Newton’s method has been applied K times to z0 without converging to a root,
save the value zK in a set I 1n for possible future use. In addition, if |zi | > r(1+

√
2)

for any i > 1 (a kind of “runaway” z), store zi in I 1n as well. If all points in In have
been tried and the number of located roots is less than n, repeat the whole procedure
by taking I 1n as the new initial set and place any non-convergent points in the next
auxiliary set I 2n . Continue until all n roots are found.

The number of iterations required to find all roots with a precision of ε does
not exceedO(n2 log4 n + n log | log ε|). The number of initial points can be reduced
by increasing r , but starting from large radii implies that more Newton steps need

simon.sirca@fmf.uni-lj.si



Chapter 3
Matrix Methods

For physicist’s needs, numerical linear algebra is so comprehensively covered by
classic textbooks [1, 2] that another detailed description of the algorithms here would
be pointless. To a larger extent than in other chapters we wish to merely set up
road-signs between approaches to solving systems of linear equations, least-squares
problems, and eigenvalue problems. Only Sect. 3.9 on random matrices conveys a
somewhat different tone. Above all, we shall pay attention to classes of matrices
for which analytic and numerical tools are particularly thoroughly developed and
efficient.

To numerically solve problems in linear algebra, never write your own routines!
This advice applies even to seemingly straightforward operations like matrix multi-
plication, and even more so to solving systems of equations Ax = b or eigenvalue
problems Ax = λx . For these tasks we almost invariably use specialized libraries
(see, for example, [3] and Appendix J).

3.1 Basic Operations

3.1.1 Matrix Multiplication

Classical multiplication of n × n matrices in the form

Ci j =
n∑

k=1

Aik Bkj , i, j = 1, 2, . . . , n , (3.1)

where the Aik Bkj multiplication is nested into three loops over i , j , and k, requires
F = 2n3 multiplications or additions and M = n3 + 3n2 memory accesses. The
optimal ratio is F/M ≈ n/2 [1], so this method of multiplication is not optimal.

© Springer International Publishing AG, part of Springer Nature 2018
S. Širca and M. Horvat, Computational Methods in Physics,
Graduate Texts in Physics, https://doi.org/10.1007/978-3-319-78619-3_3

121

simon.sirca@fmf.uni-lj.si



122 3 Matrix Methods

(Note thatM maydepend on processor architecture, peculiarities of the programming
language, implementation, and compiler.) In standard libraries BLAS3 or LAPACK
(see Appendix J) multiplication is realized in block form that also requires F = 2n3

arithmetic operations, but has a better asymptotic ratio F/M for large n. For all forms
of direct multiplication in floating-point arithmetic we have the estimate

fl(AB) = AB + E , |E | ≤ n
εM
2
|A| |B| +O

(
ε2M

)
, (3.2)

where |A| means (|A|)i j = |Ai j |. We also have

‖fl(AB) − AB‖1 ≤ n
εM
2

‖A‖1‖B‖1 +O
(
ε2M

)
. (3.3)

Faster algorithms exist, e.g. Strassen’s [4] that splits the matrices A and B into
smaller blocks which are then recursively multiplied and summed. The asymptotic
cost of the algorithm is 4.70 n2.81, so it really starts to soar when used with matrices
of dimensions n in the hundreds or thousands. In some cases, Strassen’s method
may exhibit instabilities, but robust versions are contained in the fast versionBLAS3
[5] and we should use them if speed is our absolute priority. For optimally fast
multiplicationwe need to understand the connection between hardware and software;
see Fig. 3.1 and [6]. We can see in the anatomically detailed paper [7] just how deep
this knowledge should be in order to design the best algorithms. For Strassen’s
multiplication the estimate (3.3) still applies while (3.2) is almost always true (see
[2] and Chap.23 in [8]).

(a) (b)

Fig. 3.1 Strassen’s multiplication of 8 × 8 matrices. The diagrams show the elements of A and
B which are accessed in memory in order to form the elements of C . For example, to get the
C18 element (upper right corners) we need A1k (1 ≤ k ≤ 8) and Bk8 (1 ≤ k ≤ 8) as in classical
multiplication (3.1), but a different pattern for other elements

simon.sirca@fmf.uni-lj.si



3.1 Basic Operations 123

The currently lowest asymptotic cost is claimed by the Coppersmith-Winograd
algorithm [9] which is of orderO(n2.38), but the error constant in front of n2.38 is so
large that the algorithm becomes useful only at very large n. A standard version is
described in [10] and the best adaptive implementation in [11]. The theoretical lower
limit of the numerical cost for any matrix multiplication algorithm is, of course, 2n2,
since each element of A and B needs to be accessed at least once. See also [12–14].

3.1.2 Computing the Determinant

The determinant of a matrix A or its permutation PA should never be computed
with the school-book method via sub-determinants. Rather, we use LU decomposi-
tion (3.7) and read off the determinant from the diagonal elements of U :

det(PA) = (−1)det(P)
n∏

i=1

Uii , det(P) = order of permutation .

3.2 Systems of Linear Equations

This section deals with methods to solve systems of linear equations Ax = b, where
A is a n × n matrix and b and x are vectors of dimension n. The routines from
good linear algebra libraries (e.g. LAPACK) allow us to solve the system for r right-
hand sides simultaneously (we are then solving AX = B where B and X are n × r
matrices). Solving Ax = b is equivalent to “computing the inverse of A” although
A−1 almost never needs to be explicitly known or computed. Table 3.1 summarizes
some of the most widely used routines.

3.2.1 Analysis of Errors

Numerical errors in solving the problem Ax = b can be analyzed in two ways. One
way is to observe the sensitivity of the solution x to small perturbations of A orb. If the
vector x̂ solves the perturbed equation (A + δA)̂x = b + δb where ‖δA‖ ≤ ε‖A‖,
‖δb‖ ≤ ε‖b‖, and ε‖A−1‖‖A‖ < 1, the deviation x − x̂ from the exact solution can
be bounded as

‖x − x̂‖
‖x̂‖ ≤ ε

1 − ε‖A−1‖‖A‖

{
‖A−1‖‖A‖ + ‖A−1‖‖b‖

‖x‖

}
≤ 2εκ(A)

1 − εκ(A)
, (3.4)

simon.sirca@fmf.uni-lj.si



158 3 Matrix Methods

and
Km(A†, w1) = span

{
w1, A†w1, (A†)2w1, . . . , (A†)m−1w1

}
.

The resulting basis vectors are biorthogonal, wT
i v j = δi, j (1 ≤ i, j ≤ m), while

(3.37) is replaced by an asymmetric transformation of the form

W †
m AVm = Hm ,

where Vm and Wm are constructed from the vi ’s and wi ’s, respectively. The Hessen-
berg matrix Hm is tridiagonal but in general no longer real and symmetric.

3.7.3 Preconditioning and Filtering

Just as in the case of sparse linear solvers, the efficiency of iterative projection
algorithms for solving large eigenvalue problems can be greatly improved by pre-
conditioning. In addition, their convergence can be accelerated by a technique called
polynomial filtering: the idea behind it is to pre-process the initial vectors or the
initial Krylov subspace in order to reduce their components in the unwanted parts of
the spectrum relative to those in the wanted parts. For details see Chaps. 7 and 8 of
[68].

3.8 Pseudospectra of Matrices !

The concept of pseudospectra is useful in the analysis of specific mathematical
problems and physical systems in which the standard eigenvalue methods may fall
short of completely explaining their known or presumed properties and behavior.
Most often this can be witnessed in systems represented by matrices which are
highly non-normal. Normal matrices are diagonalizable, i.e. they can be decomposed
by (3.27) and hence possess a complete set of orthogonal eigenvectors such that
X−1 = XT or X−1 = X†, and the corresponding set of eigenvalues, the spectrum
σ(A). Non-normality, on the other hand, refers to the fact that the eigenvectors of A,
if they exist, are far from orthogonal: this translates into the statement that A is far
from normal when ‖X‖‖X−1‖ & 1 in some matrix norm. In this section we assume
‖ · ‖ = ‖ · ‖2.

3.8.1 Definition of Pseudospectrum

For arbitrary (usually small) ε > 0, the ε-pseudospectrum σε(A) of A ∈ Cn×n is the
set of points z ∈ C for which

simon.sirca@fmf.uni-lj.si



3.8 Pseudospectra of Matrices ! 159

‖(A − z I )−1‖ > ε−1 , (3.39)

i.e. the norm of the resolvent of A at z exceeds some (usually large) value. Note that
the proper spectrum implies z ∈ σ(A) ⇔ ‖(A − z I )−1‖ = ∞. Indeed, for normal
matrices ‖(A − z I )−1‖ is always large when z is near an eigenvalue. What makes
non-normal matrices so special is the fact that this norm can be large even when
z is far away from the spectrum, with important consequences. For instance, the
transient (non-asymptotic) behavior of a non-normal system may be driven by the
pseudospectrum, not the genuine eigenvalues alone. An example will be shown in the
discussion of stability of stiff differential equations in Sect. 7.10, see also Fig. 11.8
(left). Contrary to common experience, the eigenvalues may also fail to predict the
correct asymptotic and resonance behavior of such systems when variable coef-
ficients, non-linearities or complicated force terms (right-hand sides) are present.
Aconvincingmotivation for pseudospectra and theproof of their all-pervading impor-
tance in wide areas of physics is offered by the landmark (and almost inexhaustible)
monograph [69].

Since the eigenvaluesmay be extremely sensitive to perturbations (see Sect. 3.6.1),
an equivalent definition of the pseudospectrum can be based on what happens to the
eigenvalues of A when its matrix elements are changed by a small amount: the
pseudospectrum σε(A) of A is the set of z ∈ C such that

z ∈ σ(A + E) , (3.40)

where E ∈ Cn×n is any small perturbationwith ‖E‖ < ε. In other words, if one could
generate all perturbations of A with ‖E‖ < ε, they would fill the area enclosed by
the ε-boundary of the pseudospectrum.

Example (Adapted from [69].) Consider the tridiagonal non-symmetric Toeplitz
matrix

A =





0 1
1
4 0 1

. . .
. . .

. . .
1
4 0 1

1
4 0




. (3.41)

It can be symmetrized by B = DAD−1, where D = diag (2, 4, . . . , 2n), yielding

B =





0 1
2

1
2 0 1

2
. . .

. . .
. . .

1
2 0 1

2
1
2 0




. (3.42)

simon.sirca@fmf.uni-lj.si



160 3 Matrix Methods

Fig. 3.9 [Left] The spectrum σ(A) (dots on the real axis) and the pseudospectra σε(A) (ellipses)
of the matrix (3.41) of dimension n = 64. [Right] Superposition of eigenvalues of 100 matrices
A + E , where E is a random matrix with ‖E‖ = 0.001

The similarity transformation preserves the eigenvalues, hence the spectra of A and
B are identical, consisting of n distinct numbers on the real axis:

λi (A) = λi (B) = cos
iπ

n + 1
, 1 ≤ i ≤ n (3.43)

(see (A.7)). The pseudospectra of A, however, reside far from the real axis. Figure 3.9
(left) shows the boundaries of σε(A) with n = 64 for several ε. We see that even at
distances from the spectrum on the order of 1 the norm of the resolvent remains very
large.

Figure 3.9 (right) illustrates the pseudospectrum of A according to the alternative
definition (3.40). The plot shows a superposition of 6400 pseudoeigenvalues at ε =
0.001 generated by calculating the eigenvalues of 100 matrices A + E , where E is a
randommatrix whose elements are independent normal random deviates. Thematrix
E has been normalized such that ‖E‖ = 0.001.

Figure 3.9 is just a visualization of the pseudospectrum. But what does it mean
for the behavior of A and B? Suppose that we wish to predict the norms of the
powers Ak and Bk for various k. The classical approach to this problem is to resort
to eigenvalues: first diagonalize A via X−1AX = ", then, since taking the power of
a diagonal matrix is trivial, calculate

"k =
(
X−1AX

)k = X−1AAA · · · AX = X−1Ak X ,

and, finally, “un-diagonalize” "k to obtain Ak = X"k X−1, and analogously for
Bk . Furthermore, by (3.43), the spectral radii (the maximum absolute eigenvalues)
of A and B are equal, ρ(A) = ρ(B) = cos(π/(n + 1)). Since these quantities are
smaller than 1, by the procedure outlined above both A and B are power-bounded as

simon.sirca@fmf.uni-lj.si



3.8 Pseudospectra of Matrices ! 161

Fig. 3.10 The norms of the
powers Ak and Bk of
matrices (3.41) and (3.42) as
functions of k, for n = 32
and n = 64

‖Ak‖ ≤ CA and‖Bk‖ ≤ CB for all k ≥ 0,with‖Ak‖ → 0 and‖Bk‖ → 0 as k → ∞.
Figure 3.10 confirms these expectations, yet it is obvious that the behavior of the
powers of the non-normal matrix A and of the symmetric (and therefore normal)
matrix B generated from it are completely different — even though their spectra are
identical.

The pseudospectra help to elucidate the most interesting “transient” region where
k < n. Here ‖Ak‖ grows exponentially, with the slope in the log-linear plot given
by (1.25)k . The value 1.25 corresponds to the rightmost point of the dashed ellipse
in Fig. 3.9 (right), i.e. to the absolutely maximum pseudoeigenvalue. It is precisely
this pseudospectral radius — rather than the eigenvalues — that drives the behavior
of ‖Ak‖ for moderate k. ,

3.8.2 Pseudospectra of Linear Operators

The concept of matrix pseudospectra can be generalized to linear operators acting
in infinitely dimensional spaces, for instance, in complete normed (Banach) spaces.
Assuming that the inverse of such an operator A is bounded, its ε-pseudospectrum
σε(A) can still be defined as the set of points z ∈ C such that

‖(A − z)−1‖ > ε−1

by analogy to (3.39), but ‖ · ‖ is now an operator norm (see Appendix A.4). The most
common operators of this kind are differential or integral operators. The simplest
example is the derivative operator A = d/dx acting in the space of functions u ∈
L2(0, 1),

Au = u′ = du
dx

, (3.44)

and subject to the boundary condition u(1) = 0. The eigenfunctions of this differ-
ential operator would have to have the form u(x) = ezx for some z ∈ C, but the
boundary condition forbids any solution of this kind. Hence the spectrum of A is

simon.sirca@fmf.uni-lj.si



194 4 Transformations of Functions and Signals

approximation of the continuous Fourier transform of a periodic function f on the
interval [0, 2π ]:

1
2π

∫ 2π

0
f (x) e−i kx dx = 1

N

N−1∑

j=0

f (x j ) e−i2π jk/N +RN ,

where RN = − f ′′(ξ)(2π)2/(12N 2) and ξ ∈ [0, 2π ].

4.2.3 Aliasing

The coefficients of the discrete Fourier transform (4.11) and the coefficients of the
exact expansion (4.7) are related by

f̃k = f̂k +
∞∑

m=−∞
m %=0

f̂k+Nm , k = −N/2, . . . , N/2− 1 . (4.16)

By using (4.9) and (4.13) this can be written as IN f = SN f + RN f . The remainder

RN f = IN f − SN f =
N/2−1∑

k=−N/2




∞∑

m=−∞
m %=0

f̂k+Nm



φk (4.17)

is called the aliasing error and it measures the difference between the interpola-
tion polynomial and the truncated Fourier series. Aliasing implies that the Fourier
component with the wave-number (k + Nm) behaves like the component with the
wave-number k. Because the basis functions are periodic,

φk+Nm(x j ) = φk(x j ) , m %= 0 ,

such components are indistinguishable (Fig. 4.4). In other words, on a discrete mesh,
the kth Fourier component of the interpolant IN f depends not only on the kth com-
ponent of f , but also on the higher components mimicking the kth.

The aliasing error is orthogonal to the truncation error f − SN f , thus

‖ f − IN f ‖2 = ‖ f − SN f ‖2 + ‖RN f ‖2 .

The interpolation error is therefore always larger than the truncation error.

Example Knowing how to control aliasing has important practical consequences.
The signals on standard audio compact discs are sampled at the frequency of νs =
44.1 kHz. The critical frequency (4.6) is then νc = νs/2 = 22.05 kHz. Such fine
samplingprevents aliasing in the audible part of the spectrumand there is nodistortion

simon.sirca@fmf.uni-lj.si



4.2 Fourier Series 195

Fig. 4.4 A periodic signal sin(2πνt) with the frequency ν = 1 s−1 (full line) is sampled at
νs = 5 s−1 (squares): the critical frequency (4.6) is νc = ωc/(2π) = 2.5 s−1. We obtain exactly the
same function values by sampling the functions sin(2π(ν − νs)t) (dashed line) or sin(2π(ν + νs)t)
(dotted line). At this sampling rate, aliasing causes all three signals to be represented with the
frequency ν in the discrete Fourier spectrum

Fig. 4.5 Frequency spectrum of the concluding chord of the Toccata and Fugue for organ in d-
minor, BWV565, of J. S. Bach. Full curve: sampling at 44.1 kHz. Dashed line: sampling at a smaller
frequency 882Hz causes aliasing. The arrows indicate the peak at 593Hz which is mirrored across
the critical frequency νc = 441Hz onto the frequency (441− (593− 441))Hz = 289Hz, and the
peak at 446Hz which maps onto 436Hz

of the signal. Had we wished, however, to compress the signal, we should not do
this by simply decreasing the sampling frequency, since this would map the high-
frequency components into the low-frequency part of the spectrum and the signal
would be distorted. Instead, we should use a filter to remove the high-frequency part
of the spectrum and only then down-sample. Figure 4.5 shows the appearance of
aliasing in the frequency spectrum of an acoustic signal sampled at 44.1 and 882Hz
without filtering. '

simon.sirca@fmf.uni-lj.si



196 4 Transformations of Functions and Signals

Fig. 4.6 Leakage in the frequency spectrum in the discrete Fourier transform of a sine wave with
the frequency 1Hz. [Left] Sampling at N = 32 points 0.25 s apart encompasses precisely four
complete waves. The only non-zero component of the transform is the one corresponding to the
frequency of 1Hz. [Right] Sampling at N = 32 points 0.22 s apart covers only 3.52 waves. Many
non-zero frequency components appear. The curves connect the discrete transform of the same
signals, except that the 32 original samples of the signal are followed by 224 zeros (total of 256
points). Adding zeros in the temporal domain is known as zero padding and improves the resolution
in the frequency domain. In the limit N →∞ we approach the continuous Fourier transform

4.2.4 Leakage

The discrete Fourier transformation of realistic signals of course involves only finitely
many values. From an infinite sequence we pick (multiply by one) only a sample of
length N , whereas the remaining values are dropped (multiplied by zero). Due to
this restriction, known as windowing, the frequency spectrum exhibits the leakage
phenomenon shown in Fig. 4.6 (adapted from [4]). To some extent, leakage can be
controlled by usingmore sophisticatedwindow functions that engage a larger portion
of the signal and smoothly fade out instead of crude multiplication of the signal by
one and the remainder by zero. The advantages and weaknesses of some classical
window functions are discussed in [5].

4.2.5 Fast Discrete Fourier Transformation (FFT)

The discrete Fourier transformation (4.11) is a mapping between the vector spaces
of dimensions N , FN : CN → CN . Let us rewrite it in a more transparent form,

F = FN [ f ] , Fk =
1
N

N−1∑

j=0

f j e−2π i jk/N , (4.18)

simon.sirca@fmf.uni-lj.si



4.2 Fourier Series 197

where we have denoted f = { f j }N−1j=0 and F = {Fk}N−1k=0 . Note that the indices j and
k run symmetrically, both from 0 to N − 1. The inverse transformation is

f = F−1N [F] , f j =
N−1∑

k=0

Fk e2π i jk/N .

Then (4.18) can be written as

Fk =
1
N

N−1∑

j=0

Wkj
N f j , WN = e−2π i/N . (4.19)

To evaluate theDFTby computing this sumwe needO(N 2) operations. But precisely
the same result can be achieved with far fewer operations by using the Cooley-Tukey
algorithm. Let N be divisible by m. Then the sum can be split into m partial sums,
and each of them runs over the elements f j of the array f with the same modulus of
the index j mod m:

Fk =
1
N

m−1∑

l=0

Wkl
N

N/m−1∑

j=0

Wkj
N/m fmj+l .

Let us denote by f (l) = { fmj+l}N/m−1
j=0 the components of the array f which have the

same modulus of the index with respect to m. We have thus recast the transform of
the original array f of dimension N as a sum of m transforms of the shorter arrays
f (l) of dimension N/m. This can be written symbolically as

FN [ f ]k =
1
N

m−1∑

l=0

Wkl
N

(
N
m
FN/m[ f (l)]

)

k
.

This is a recursive computation of the DFT for the array f that follows the idea of
divide-and-conquer algorithms. The array f for which the DFT should be computed
is gradually broken down into sub-arrays, thus reducing the amount of necessary
work. The optimal factorization is N = 2p (p ∈ N) in which at each step the array
is split into two sub-arrays containing elements of the original array with even and
odd indices, respectively. This method requires O(N log2 N ) operations for the full
DFT instead ofO(N 2) by direct summation, lending it the name Fast Fourier Trans-
formation. Similar speeds are attainable by factorizing N to primes, e.g.

N = 2p13p25p37p4 , pi ∈ N ,

which is supported by all modern FFT libraries. Good implementations of the FFT
are complicated, as the factorization should be carefully matched to the addressing of
the arrays. The most famous library is the multiple-award winning FFTW3 (Fastest

simon.sirca@fmf.uni-lj.si



198 4 Transformations of Functions and Signals

Fig. 4.7 [Left] The numerical cost (number of CPU cycles T ) of the computation of the DFT by
the basic definition (4.19) and by using the FFT, as a function of the sample size N . [Right] The
average measure of deviation EN (h) for the computation of the DFT by definition and by using the
FFT

Fourier Transform in the West) [6]; see also [7, 8]. A comparison of the CPU cost
of the standard DFT and FFT is illustrated in Fig. 4.7 (left).

Example Due to the fewer operations, FFT is not only essentially faster than the
naive DFT; it is also more precise, as can be confirmed by a numerical experiment.
We form the array f = { f0, f1, . . . , fN−1} of random complex numbers. We apply
the DFT to compute the transform of f , to which we apply the inverse DFT. Finally,
we compute the deviation of the resulting array from the original array:

& f = (F−1N ◦ FN ) f − f .

In arithmetic with precision ε, we get & f %= 0. We define the average deviation as
EN ( f ) = 〈‖& f ‖2/‖ f ‖2〉, where the average 〈·〉 is over a large set of random arrays.
The results are shown in Fig. 4.7 (right). When the DFT is computed by (4.18), we
get EN ( f ) ∼ O(εN 2), while the FFT gives EN ( f ) ∼ O(ε

√
log N ) [9]. In short, the

FFT algorithm is unbeatable! All decent numerical libraries support the computation
of the DFT by FFT algorithms (see Appendix J). '

4.2.6 Multiplication of Polynomials by Using the FFT

Multiplication of polynomials is one of the tasks in computing with power bases,
e.g. in expansions in powers of the perturbation parameters in classical and quantum
mechanics. The multiplication of p(x) =∑n

i=0 ai x
i and q(x) =∑m

i=0 bi x
i in the

form

simon.sirca@fmf.uni-lj.si



4.2 Fourier Series 199

q(x)p(x) =
n+m∑

i=0

ci xi , ci =
i∑

k=0

akbi−k ,

requiresO((n + 1)(m + 1)) operations to determine the coefficients ci . If the number
of terms is large (n,m . 1) this process is slow and prone to rounding errors. A faster
and a more precise way is offered by the FFT. We form two arrays of length N =
m + n + 1. The coefficients of the polynomials p and q are stored at the beginning
of these arrays while the remaining elements are set to zero:

A = {Ai }N−1i=0 = {a0, . . . , an , 0, . . . , 0︸ ︷︷ ︸
m

} , B = {Bi }N−1i=0 = {b0, . . . , bm , 0, . . . , 0︸ ︷︷ ︸
n

} .

The coefficients of the product are given by the convolution

ci =
N−1∑

k=0

Ak Bi−k , i = 0, 1, . . . , N − 1 ,

where we assume periodic boundary conditions, Ak = AN+k , Bk = BN+k . The con-
volution is then evaluated by first computing the FFT of the arrays A and B,

Â = { Âi }N−1i=0 = FN [A] , B̂ = {B̂i }N−1i=0 = FN [B] ,

multiplying the transforms component-wise into a new array Ĉ = { Âi B̂i }N−1i=0 , and
finally compute its inverse FFT,

C = {Ci }N−1i=0 = NF−1N [Ĉ] .

This procedure has a numerical cost of O(N log2 N ) which, for n,m . 1, is much
smaller than the cost of directly computing the sums of the products.

4.2.7 Power Spectral Density

The Fourier transformation can be seen as a decomposition of a signal to a linear
combination of the functions Aωeiωx . The quantity |Aω|2 is the signal power at the
given frequency ω. If we are dealing with real signals, we are mostly interested in
the total power at the absolute value of the frequency, |Aω|2 + |A−ω|2 for ω ≥ 0.

For a continuous signal f with the Fourier transform (4.1), we define the double-
sided power spectral density (PSD) as

S(ω) = |F(ω)|2 , ω ∈ R ,

while the single-sided power spectral density is

simon.sirca@fmf.uni-lj.si



200 4 Transformations of Functions and Signals

S(ω) = |F(−ω)|2 + |F(ω)|2 , ω ∈ R+ .

Often, the double-sided spectral density of a signal is defined via the single-sided
density in which the power of a component with the frequency ω is equal to the
power of the component with the frequency −ω, and then S(ω) = 2|F(ω)|2.

For discrete data { f j } with the transform (4.18) the discrete double-sided power
spectral distribution {Sk} is defined analogously to the continuous case,

Sk = |Fk |2 , k = 0, 1, . . . , N − 1 .

The quantity Sk measures the power of the signal at the frequency 2πk/N , while
SN−k corresponds to the frequency−2πk/N , where k = 0, 1, . . . , N/2− 1. For the
single-sided distributionwe sumover the powers of negative andpositive frequencies.
For odd N , the single-sided distribution {Sk} is defined as

S0 = |F0|2 ,
2Sk = |Fk |2 + |FN−k |2, k = 1, 2, . . . , (N − 1)/2 ,

while for even N it is given by

S0 = |F0|2 ,
2Sk = |Fk |2 + |FN−k |2 , k = 1, 2, . . . , N/2 ,

SN/2 = |FN/2|2 .

In the discrete case, Parseval’s equality applies in the form

1
N

N−1∑

j=0

| f j |2 =
N−1∑

k=0

|Fk |2 .

4.2.8 Sparse FFT

In many applications including audio and video compression, magnetic resonance
imaging, radio astronomy and global positioning systems the overwhelmingmajority
of the Fourier coefficients of a signal are small or equal to zero. While the standard
FFT is insensitive to this sparseness of the spectrum and grinds away at its immutable
O(N log N ), a “sparse FFT” should be able to exploit precisely this feature. In other
words, given a N -dimensional vector (set of complex values) f with the Fourier
transform F , a sparse FFT algorithm should produce an approximation F̂ to F that
satisfies

‖F − F̂‖2 ≤ C min
k−sparse G

‖F − G‖2 ,

simon.sirca@fmf.uni-lj.si



4.2 Fourier Series 201

Fig. 4.8 [Left] Average times needed to compute the discrete Fourier transforms of length-N
signals with sparse (k = 50) spectra by using FFTW3 [6], sFFT2 and sFFT3. [Right] Average
computation times as functions of the number of non-zero frequency components at fixed signal
size N . (Notation as in the left panel.)

where C is a constant and the minimization runs over k-sparse transforms G,
i. e. transforms with k non-zero frequency components. Transforms possessing at
most k non-zero components are called exactly sparse; if the other N − k compo-
nents still represent a non-zero, yet relatively much smaller fraction of the signal
power, the transform is said to be approximately sparse — the latter being the usual
case due to the presence of noise.

Sparse Fourier transformations have a long history, but in an interesting recent
development, the authors have shown that such transforms can be obtained at a
computational cost of O(log N

√
Nk log N ) or O(k log N log(N/k)) in the approx-

imately sparse case, depending on the details of the implementation (see [10–12],
sFFT2 library), and as low as O(k log N ) in the exactly sparse case [12]. Taking
architecture-specific details into account, the performance can be further improved
(see [13, 14], sFFT3 library, exactly sparse only). Figure 4.8 shows the average com-
putation times for the evaluations of the sparse FFT by using the FFTW3, sFFT2
and sFFT3 libraries.

4.2.9 Non-uniform (Non-equispaced) FFT

Unevenly spaced time series are ubiquitous in science, in particular in astrophysics
and seismology. There the signals come at times which are beyond our control, as in
earthquakes. It may also happen that the detectors are inoperational for a fraction of
the time, or that certain data values are flagged as suspicious and must be discarded.
An example of such a signal is given in Fig. 4.9. Simplistic approaches to dealing

simon.sirca@fmf.uni-lj.si



202 4 Transformations of Functions and Signals

(a) (b) (c)

Fig. 4.9 [Top]Apart of themeasured light curve (normalizedflux F) of the variable starHD180642
acquired by the CoRoT satellite [15]. [Bottom] Naive (and inappropriate) strategies (plotted in
red) to cope with the missing data: (a) setting them to zero, (b) “clamping” to the last known value,
(c) a dangerous step into the dark by cubic interpolation

with the missing data problem—illustrated in the bottom panel—do not work. Large
gaps in the data (case (a), for instance) tend to amplify the low-frequency portion of
the power spectrum, corresponding to wavelengths on the order of the gap size.

Themost popular and reliable spectral analysis method for unevenly sampled data
{ fi }N−1i=0 acquired at arbitrary times {ti }N−1i=0 is to construct the Lomb-Scargle power
spectrum (periodogram) [16]

PLS(ω) =
1

2σ 2

{[∑
i ( fi − f ) cosω(ti − τ )

]2
∑

i cos2 ω(ti − τ )
+
[∑

i ( fi − f ) sinω(ti − τ )
]2

∑
i sin

2 ω(ti − τ )

}

,

(4.20)
where

f = 1
N

N−1∑

i=0

fi , σ 2 = 1
N − 1

N−1∑

i=0

(
fi − f

)2
,

are the signal mean and variance, respectively, and the parameter τ is defined by

tan 2ωτ =
∑

i sin 2ωti∑
i cos 2ωti

.

simon.sirca@fmf.uni-lj.si



4.2 Fourier Series 203

The offset τ makes PLS(ω) independent of shifting all the ti ’s by a constant.Moreover,
introducing τ in thismanner causes the linear least-squares fit of the data to themodel
f (t) = A cosωt + B sinωt to yield precisely (4.20).
As in the naive DFT, the numerical cost of calculating PLS(ω) by direct evaluation

of the sums is O(NωN ), where Nω is the number of desired frequencies in the
spectrum. This obstacle can be overcome by a much faster procedure. Defining

C f =
∑

i

(
fi − f

)
cosωti , S f =

∑
i

(
fi − f

)
sinωti ,

C2 =
∑

i cos 2ωti , S2 =
∑

i sin 2ωti ,
(4.21)

it holds that
∑

i

(
fi − f

)
cosω(ti − τ ) = C f cosωτ + S f sinωτ ,

∑
i

(
fi − f

)
sinω(ti − τ ) = S f cosωτ − C f sinωτ ,

∑
i cos

2 ω(ti − τ ) = N
2

+ C2

2
cos 2ωτ + S2

2
sin 2ωτ ,

∑
i sin

2 ω(ti − τ ) = N
2
− C2

2
cos 2ωτ − S2

2
sin 2ωτ .

(4.22)

Note that if the ti ’s were evenly spaced, one could calculateC f , S f ,C2 and S2 by two
complex FFTs, plug the results into (4.22) and use these to compute (4.20). The key
question, therefore, is how to evaluate the sums of (4.21) for arbitrarily spaced data.
This is accomplished by fast non-uniform FFT algorithms (NUFFT) with typical
numerical costs of O(N log N ) or O(N log N + | log ε|N ), where ε is the desired
numerical precision.

Several types of NUFFT are available, depending on whether the sampling in
the configuration space (time, coordinate) or in the transform space (frequency)—or
both—are non-uniform, since the forward and the inverse transformation happen to
be not simply the two sides of the same coin as in the standard FFT. An introduction
to various classes of algorithms is given in [17, 18], see also [19–21]. Most methods
rely on some sort of local rearrangement of the data from an irregular grid onto a
regular one, in conjunction with the classic FFT to evaluate the intermediate sums.
In the classic fasper routine of the NR3e library based on [22] this rearrangement
is accomplished by inverse interpolation. In an alternative approach, trigonometric
polynomials p(x) =∑k pk exp(−2π ikx) are approximated by linear combinations
of translated window functions ϕ that are well localized in both configuration and
transform spaces; the core of the algorithm is again the transformation of Fourier
integrals of ϕ (calculated analytically) by means of the FFT. This is at the heart of
NFFT3 [23], presently the most comprehensive and fastest NUFFT package on the
market based on the FFTW3 library and elaborated in more detail in [24–26]. For
NFFT3 at work in the astrophysical example mentioned above, see [27].

simon.sirca@fmf.uni-lj.si



4.5 Hilbert Transformation + 227

the description of the long tails. A detailed discussion of the variants of the Hilbert
transform with emphasis on signal processing applications can be found in [44, 56,
57] and in the monumental work [58].

4.6 Continuous Wavelet Transformation !

We may think of the wavelet transformation of a signal [59–62] as an extension of
its Fourier analysis, through which not only the strengths of the signal’s frequency
components are determined, but also the times at which these components occur. The
classic example in Fig. 4.19 illustrates this basic idea for the signal sin(t2) whose
frequency linearly increases with time. By using the wavelet transformation we can
also locate changes in the signal that are not immediately apparent from its temporal
behavior alone (Fig. 4.20).

The continuous wavelet transform (CWT) of the function f is defined as

Lψ [ f ](s, t) =
1
√
cψs

∫ ∞

−∞
f (τ )ψ∗

(
τ − t
s

)
dτ , t ∈ R , s %= 0 ,

where t is the time at which a feature of scale s is observed in the function f , and
cψ is the normalization constant. The function ψ , whose properties are given in the

Fig. 4.19 The basic idea of the continuous wavelet transform. [Top] The signal f (t) = sinωt ,
ω ∝ t . [Bottom] In this portion of the signal, the continuous wavelet transformation detects large
structures at short times (where the waves have a typical scale s ≈ 1.5) and small structures at long
times (scale s ≈ 0.3). The frequency and the scale of the oscillations are inversely proportional,
which generates the typical curvature of the transform (s ∝ ω−1 ∝ t−1)

simon.sirca@fmf.uni-lj.si



228 4 Transformations of Functions and Signals

Fig. 4.20 Continuous transform of a real signal with a complex Morlet wavelet (4.71) [Top] The
signal f (t) = t2 (t < 1) or f (t) = 1+ 2 log t (t ≥ 1) is continuous and has a continuous first
derivative at t = 1 while its second derivative is discontinuous. [Bottom] The phase of the wavelet
transform in the vicinity of t = 1 oscillates a couple of times, and reveals the location of the critical
point when the scale s is decreased

following, should allow us to change the parameter s (the typical scale of a structure
in the signal f ) as well as its shift t with respect to the signal f . By denoting

ψs(t) = ψ∗(−t/s)

we can rewrite the definition in the form of a convolution

Lψ [ f ](s, t) =
1
√
cψs

∫ ∞

−∞
f (τ )ψs(t − τ ) dτ . (4.68)

The function ψ should satisfy certain conditions. Its “energy” should be bounded,
which means

∫∞
−∞ | f (t)|2 dt <∞, and the weighted integral of its spectral density

(the square of the Fourier transform ψ̂) should be finite:

cψ = 2π
∫ ∞

−∞

1
|ω|

∣∣∣ψ̂(ω)
∣∣∣
2
dω <∞ .

The functions ψ found in the literature usually fulfill this admissibility condition by
design. Moreover, we require the functions ψ to fulfill

∫ ∞

−∞
ψ(η) dη = 0 . (4.69)

simon.sirca@fmf.uni-lj.si



4.6 Continuous Wavelet Transformation + 229

The functions ψ therefore oscillate around the abscissa and fall off rapidly at large
distances from the origin, giving them the appearance of small waves and the nick-
name wavelets. The simplest wavelet is the Haar function

ψHaar(η) =






1 ; 0 ≤ η < 1/2 ,
−1 ; 1/2 ≤ η < 1 ,
0 ; otherwise .

The derivative of Gaussian wavelets DOG(m) are also very simple to use. We obtain
them by successive derivatives of the Gauss function,

ψDOG(m)(η) =
(−1)m+1

√
.(m + 1/2)

dm

dηm

(
e−η2/2

)
. (4.70)

Another useful wavelet is the complex Morlet wavelet

ψMorlet(η) = π−1/4 eiω0η e−η2/2 , ω0 ∈ [5, 6] . (4.71)

(For theMorlet wavelet (4.69) is not exactly fulfilled; the absolute precision to which
the equality is valid improves when ω0 is increased, and amounts to at least ≈ 10−5

for ω0 > 5.) When complex wavelets are used, the corresponding transforms should
be specified in terms of their magnitudes and phases (see Fig. 4.20). Some typical
wavelets are shown in Fig. 4.21.

Fig. 4.21 Examples of wavelets used in the continuouswavelet transformation. By horizontal shifts
and changes of scale the wavelet probes the features of the investigated signal and the times at which
these features appear. [Left] Haar wavelet. [Center] The DOG(2) wavelet known as the “Mexican
hat”. [Right] The DOG(6) wavelet

simon.sirca@fmf.uni-lj.si



230 4 Transformations of Functions and Signals

4.6.1 Numerical Computation of the Wavelet Transform

The continuous wavelet transform (4.68) of the discrete values of the signal fk with
the chosen scale parameter s is evaluated by computing the convolution sum [63]

Lψ [ f ](s, tn) =
1
√
cψs

N−1∑

k=0

fk ψ∗
(
(k − n)&t

s

)
, n = 0, 1, . . . , N − 1 .

(4.72)
We take the values of s from an arbitrary set {sm}M−1m=0 with some M < N . The most
simple choice is sm = (m + 1)&t . The computation of the sum becomes unaccept-
ably slow for large N and M as the time cost increases as O(MN 2). Since the
convolution of two functions in configuration space is equivalent to the multiplica-
tion of their Fourier transforms in the Fourier space, the CWT can be computed by
using the fast Fourier transformation (FFT).

Wavelets Given as Continuous Functions The procedure is simple when wavelet
functions exist in closed forms and for which the analytic form of their Fourier
transforms in known. First we use the FFT to compute the Fourier transform F of
the signal f which has been sampled at N points with uniform spacings &t :

Fk = FN [ f ]k =
1
N

N−1∑

n=0

fn e−i 2πkn/N . (4.73)

If the wavelet is given by the function ψ(t/s) in configuration space, its correlate
in Fourier space (in the continuous limit) is the function ψ̂(sω). For example, the
family of wavelets (4.70) corresponds to the family of transforms

ψ̂DOG(m)(sω) =
−im√

.(m + 1/2)
(sω)m e−(sω)

2/2 .

The wavelet transform is then evaluated by using the inverse FFT to compute the
sum

Lψ [ f ](s, tn) =
1
√
cψs

N−1∑

k=0

Fk ψ̂∗(sωk) eiωkn&t ,

where

ωk =
{

2πk/(N&t) ; k ≤ N/2 ,
−2πk/(N&t) ; k > N/2 .

The numerical cost of this procedure is O(MN log N ).

Wavelets Given at Discrete Points If the wavelet is not specified as an analytic
function or if its Fourier representation is not known, we need to compute both
the discrete Fourier transform of the sampled signal (4.73) and the discrete Fourier
transform of the wavelet at scale s, i.e.

simon.sirca@fmf.uni-lj.si



4.6 Continuous Wavelet Transformation + 231

Fig. 4.22 Sampling at N = 32 points for the computation of the continuous wavelet transform.
[Left] Periodic sampling of the wavelet in its natural (dimensionless) scale at the maximum scaling
parameter s. Thewavelet is sampled at N points on [ηmin, ηmax] = [−4, 4].Whenwewish to reduce
the parameter s, we insert zeros at the location marked by the thick arrow and the symbol ∗. [Right]
Sampling of the signal at N points of the physical (time) scale or the interval [0, N&t]. The relation
between the dimensionless variable η and the physical time t is η = t (ηmax − ηmin)/(N&t). For
details see [64]

Yk = FN [ψs]k =
1
N

N−1∑

n=0

ψ∗(−n&t/s) e−i 2πkn/N .

The convolution is at the heart of this procedure and the way the sampling is done
requires some attention. For even wavelets it makes sense to adopt the sampling
which preserves the symmetry of the wavelet about its origin. The wavelet and the
signal are sampled as shown in Fig. 4.22.

We obtain thewavelet transform bymultiplying the arrays Fk ≡ FN [ f ]k andYk ≡
FN [ψs]k component-wise, diving the result by √cψs, and computing the inverse
Fourier transform of the product array Wk :

Lψ [ f ](s) = NF−1N [W ] , Wk ≡
1
√
cψs

FkYk .

The inverse procedure is at hand: we reconstruct the original signal from the contin-
uous wavelet transform by deconvolution, i.e. by dividing the Fourier representation
of the transform by the Fourier representation of the wavelet. We form the arrays
Lk ≡ FN [Lψ [ f ](s)]k and Yk ≡ FN [ψs]k , divide them, multiply them by√cψs, and
compute the inverse Fourier transform of the quotient array:

f = N−1F−1N [F] , Fk ≡ √cψs (Lk/Yk) .

(The parameter s obviously has to be chosen such that Yk %= 0 for all k.)

simon.sirca@fmf.uni-lj.si



232 4 Transformations of Functions and Signals

4.7 Discrete Wavelet Transformation !

In Sect. 4.6 we have sampled the signal f (t) and the wavelet ψ(t) only at discrete
points, but the described transformation can still be considered continuous, since the
scale parameter s and the time axis span all M × N values. The continuous wavelet
transform of a function sampled at N points has M × N values and is therefore
highly redundant. In contrast, the wavelet transformation that represents the signal
uniquely at just N points is known as discrete wavelet transformation (DWT).

The basic idea of the DWT [65, 66] is to break down a signal into two partial,
half-length subsignals called the trend and the detail, respectively. The former is a
coarser version of its predecessor, while the latter encodes the details that were lost
in downsampling the original. The fact that this process can be repeated recursively
leads to a fast version of the algorithm.

4.7.1 One-Dimensional DWT

A single step of the discrete wavelet transformation of a signal f (t) sampled at times
tn = n&t , n = 0, 1, . . . , N − 1, and represented by a N -dimensional vector

f = ( f0, f1, . . . , fN−1)T

formally translates to applying digital filters to f [65, 67]. These filters operate as

f̃i =
K−1∑

k=0

ck f2i+k , i = 0, 1, 2, . . . ,

where ck are the filter coefficients and K is the filter length. Note the 2i : the signals
are being downsampled. Two types of filters are used: “low-pass” (denoted byH and
specified by the coefficients hk) and “high-pass” (G and gk).

The simplest variety of the DWT with K = 2 is the discrete version of the
continuous transformation with Haar wavelets. The first filter with the coefficients
h0 = h1 = 1/

√
2 (see Table 4.2) is used to compute the running averages of the sig-

nal, f 10 = ( f0 + f1)/
√
2, f 11 = ( f2 + f3)/

√
2, . . . , resulting in the trend subsignal

of length N/2,
f 1 =

(
f 10 , f

1
1 , . . . , f

1
N/2−1

)T
. (4.74)

Clearly f 1 still represents the dominant features of the original signal, but at twice
poorer resolution: the filter sorts out the highest frequencies, i. e. doubles the scale.
The second filter with the coefficients g0 = −g1 = 1/

√
2 is used to compute the

corresponding differences, ( f0 − f1)/
√
2, ( f2 − f3)/

√
2, . . . , yielding the detail

signal

simon.sirca@fmf.uni-lj.si



4.7 Discrete Wavelet Transformation + 233

d1 =
(
d1
0 , d

1
1 , . . . , d

1
N/2−1

)T

describing the fluctuations around the trend (4.74). These filter actions are equivalent
to computing the components of f 1 and d1 by the scalar products

f 1n = f TH1
n , d1

n = f TG1
n , n = 0, 1, . . . , N/2− 1 , (4.75)

where H1
0 =

(
1/
√
2, 1/
√
2, 0, . . .

)T
, H1

1 =
(
0, 0, 1/

√
2, 1/
√
2, 0, . . .

)T
, . . . and

G1
0 =

(
1/
√
2,−1/

√
2, 0, . . .

)T
,G1

1 =
(
0, 0, 1/

√
2,−1/

√
2, 0, . . .

)T
, . . . Wedenote

the effect of this single-step (level-1) DWT by

f 6→
(
f 1
∣∣d1) .

The process can now be repeated as many times as the signal can be halved: see
Fig. 4.25 (top). In general, a signal containing N = 2L values can be subject to
a maximum of L consecutive transformations, each halving the dimension of the
preceding trend and detail vectors. The level-2 DWT results in the N/4-dimensional
trend and detail signals f 2 and d2 derived from f 1, as well as the previous N/2-
dimensional detail vector d1,

f 6→
(
f 2
∣∣d2, d1) ,

the level-3 DWT produces the N/8-dimensional trend and detail signals f 3 and d3

derived from f 2 as well as the two previous detail signals,

f 6→
(
f 3
∣∣d3, d2, d1) ,

and so on. The components of f 2 are given by the scalar products

f 2n = f TH2
n , d2

n = f TG2
n , n = 0, 1, . . . , N/4− 1 , (4.76)

where H2
n = h0H1

2n + h1H1
2n+1 and G2

n = g0H1
2n + g1H1

2n+1, the components of
f 3 are given by

f 3n = f TH3
n , d3

n = f TG3
n , n = 0, 1, . . . , N/8− 1 , (4.77)

where H3
n = h0H2

2n + h1H2
2n+1 and G3

n = g0H2
2n + g1H2

2n+1, and so on: compare
(4.76) and (4.77) to (4.75) and note the diminishing range of index n! An example
of a three-level DWT of a 64-dimensional signal is shown in Fig. 4.23.

The recursive division of the trend signals to their subordinate trends and details
can be tracked on a time versus scale mesh which is a discrete representation of
the landscape shown, for instance, in Fig. 4.19 (bottom). Assuming that the original
signal was continuous, given by f (t), the detail subsignals d1, d2, . . . , dk and the
final f k contain the DWT of f at very specific points dictated by this recurrence:

simon.sirca@fmf.uni-lj.si



234 4 Transformations of Functions and Signals

Fig. 4.23 A three-level discrete wavelet transform of signal f of length N = 64, resulting in the
trend f 3 and three detail subsignals d1, d2 and d3

Fig. 4.24 The discrete time
versus scale mesh on which
the DWT stores its trend and
detail subsignals

Lψ [ f ]
(
s = 2l, t = 2ln

)
= 1
√
cψ

dln , l = 1, 2, . . . , L ,

which may be compared to the CWT given by formula (4.72). An example of such
a mesh is shown in Fig. 4.24. The redundancy of values plaguing the continuous
transform is gone: the DWT encodes all information in just N points.

The Inverse Transformation The f 1 and d1 taken together (or f 2, d2 and d1 taken
together, and so on) encode all information contained in f . This is ensured by requir-
ing that the filter coefficients satisfy

∑
k h

2
k =

∑
k g

2
k = 1 (energy conservation) as

well as
∑

k hk =
√
2 and

∑
k gk = 0 [59]. In addition, the transformation should

be invertible, i. e. the signal f should be recoverable from the transforms ( f 1|d1),
( f 2|d2, d1), and so on. The inverse DWT is realized by applying the so-called dual

simon.sirca@fmf.uni-lj.si



4.7 Discrete Wavelet Transformation + 235

Fig. 4.25 The logical flow of the [Top] L-level discrete wavelet transformation by using theH and
G filters and [Bottom] its inverse by using their respective duals

filters H∗ and G∗ to subsequent trend and detail signals in reverse order, thereby
reconstructing the original signal: see Fig. 4.25 (bottom).

For example, the three-level DWT given by (4.75), (4.76) and (4.77) can be
inverted by using the same filter coefficients as the “forward” DWT, by comput-
ing

F3 =
N/8−1∑

n=0

f 3n H
3
n (4.78)

as well as

D3 =
N/8−1∑

n=0

d3
nG

3
n , D2 =

N/4−1∑

n=0

d2
nG

2
n , D1 =

N/2−1∑

n=0

d1
nG

1
n , (4.79)

and finally summing the parts to yield f = F3 + D3 + D2 + D1. For a L-level
transformation, this obviously generalizes to

f = FL + DL + DL−1 + · · · + D2 + D1 .

Daubechies Wavelets
Many invertible filters can be designed that fulfill the above mentioned requirements
for hk and gk . Each admissible set of filter coefficients corresponds to a specific
family of wavelet functions themselves. The h0 = h1 = 1/

√
2 filter corresponds

to Haar wavelets, which are the simplest members of a broader class of widely
used Daubechies wavelets [68, 69] denoted by dbm. The m stands for the num-
ber of vanishing moments of the wavelet function ψdbm(x). The requirement that∫∞
−∞ t pψ(t) dt = 0 for p as high as possible is driven by the desire to maximize the
sensitivity of the wavelet transformation: if ψ(t) has enough vanishing moments,

simon.sirca@fmf.uni-lj.si



236 4 Transformations of Functions and Signals

Table 4.2 The H-filter coefficients belonging to the Daubechies (dbm) wavelets with m ranging
from 1 (Haar wavelet) to 5

m = 1 m = 2 m = 3 m = 4 m = 5

h0 1/
√
2 (1+

√
3)/4
√
2 0.332671 0.230378 0.160102

h1 1/
√
2 (3+

√
3)/4
√
2 0.806892 0.714847 0.603829

h2 (3−
√
3)/4
√
2 0.459878 0.630881 0.724309

h3 (1−
√
3)/4
√
2 −0.135011 −0.0279838 0.138428

h4 −0.0854413 −0.187035 −0.242295
h5 0.0352263 0.0308414 −0.0322449
h6 0.032883 0.0775715

h7 −0.0105974 −0.00624149
h8 −0.0125808
h9 0.00333573

the smooth parts of the signal will yield close-to-zero transform strength, while the
transform will be concentrated around the instances of rapid signal changes.

A DWT based on dbm wavelets has 2m filter coefficients for each of the H and
G filters. Table 4.2 lists the first five H-sets. The corresponding G-coefficients are
given by

gk = (−1)kh2m−k−1 , k = 0, 1, . . . , 2m − 1 .

Figure4.26 shows the dbm wavelet functions for m = 2, 4, 6, 10, 15 and 20. Note
that these functions need not be coded explicitly—and actually can not be as they do
not possess closed-form expressions. It is the filters that embody the transformation
as if it were done with precisely these functions.

Example The three-level DWT based on the db2 wavelets is calculated by using the
formulas (4.75), (4.76) and (4.77), but now the H1

n vectors are given by

H1
0 =

(
h0, h1, h2, h3, 0, 0, . . . , 0

)T
,

H1
1 =

(
0, 0, h0, h1, h2, h3, 0, 0, . . . , 0

)T
,

...

H1
N/2−2 =

(
0, 0, . . . , 0, h0, h1, h2, h3

)T
,

H1
N/2−1 =

(
h2, h3, 0, 0, . . . , 0, h0, h1

)T
, (4.80)

simon.sirca@fmf.uni-lj.si



4.7 Discrete Wavelet Transformation + 237

Fig. 4.26 Daubechies wavelets for m = 2, 4, 6, 10, 15 and 20

with {hk}3k=0 listed in the m = 2 column of Table 4.2. The G1
n vectors have the same

structure with hk replaced by gk . Since the filter is specified by four coefficients, one
has to decide what to do with the overflowing indices N/2 and N/2+ 1. The usual
solution is to wrap around the coefficients as shown in (4.80): this corresponds to the
assumption that the signal is periodic. By the same token, the H2

n and H3
n vectors

are constructed as

H2
n = h0H1

2n + h1H1
2n+1 + h2H1

2n+2 + h3H1
2n+3 , n = 0, 1, . . . , N/4− 2 ,

H3
n = h0H2

2n + h1H2
2n+1 + h2H2

2n+2 + h3H2
2n+3 , n = 0, 1, . . . , N/8− 2 ,

while computing the stranded H1
N/4−1 and H2

N/8−1 again involves wrap-around:

H2
N/4−1 = h2H1

0 + h3H1
1 + h0H1

N/2−2 + h1H1
N/2−1 ,

H3
N/8−1 = h2H2

0 + h3H2
1 + h0H2

N/4−2 + h1H2
N/4−1 .

The calculation of the G2
n and G3

n vectors proceeds along the same lines, with hk
replaced by gk . The inverse transformation is performed by using (4.78) and (4.79),
followed by f = F3 + D3 + D2 + D1. The DWT involving dbm with larger m
require correspondingly more coefficients to be wrapped around: four form = 3, six
for m = 4, and so on. '

simon.sirca@fmf.uni-lj.si



238 4 Transformations of Functions and Signals

4.7.2 Two-Dimensional DWT

The generalization of the discrete wavelet transformation to two-dimensional signals
(e. g. images) is straightforward. Assume that we are dealing with a square (N × N )
grayscale image f represented by a matrix of values

fi j , i, j = 0, 1, . . . , N − 1 .

A single-step DWT now also involves processing the image with theH and G filters,
but this proceeds in four different ways. Scanning with H along both the columns
(c) and rows (r) produces the approximate image f 1 = HrHc[ f ]. Operating with
H along the columns and G along the rows results in the “vertical detail” image
d1v = GrHc[ f ], while the opposite procedure gives the “horizontal detail” image
d1h = HrGc[ f ]. Applying G to both the columns and rows encodes the “diagonal
detail” image d1d = GrGc[ f ]. The first-level DWT of a N × N image f therefore
produces four N/2× N/2 subimages usually arranged as

f 6→
(

f 1 d1h

d1v d1d

)
.

The procedure can then be recursively repeated by exact analogy to the one-
dimensional case. The approximate (“trend”) N/4× N/4 and N/8× N/8 images
f 2 and f 3, for instance, are generated by calculating

f 1 6→
(

f 2 d2h

d2v d2d

)
, f 2 6→

(
f 3 d3h

d3v d3d

)
, . . .

An example of a three-level two-dimensional DWT is shown in Fig. 4.27.
The inverse transformation proceeds analogously to the flowchart of Fig. 4.25

(bottom), where H∗ and G∗ are replaced by the appropriate products of H∗r , H∗c , G∗r
and G∗c , and the ⊕ operation stands for the summation of matrices.

Image Compression and Denoising
Wavelet transformations lie at the heart of modern data compression algorithms. The
simplest way one-dimensional data can be compacted by means of the continuous
wavelet transformation is illustrated in Problem 4.8.4. Filtering and compressing
two-dimensional data like images, however, calls for fast two-dimensional discrete
transformations.

The basic trick of image compression consists of transforming the image matrix
by DWT, manipulating the transform, and calculating the inverse transform. The
most obvious strategy of this “manipulation” is to truncate the transform, i. e. to strip
it of its insignificant coefficients and keep only the prominent ones. This “cut-off”
can be realized in many ways, the simplest of which are taking only the coefficients
with absolute values above a certain threshold, or keeping a specified number of
coefficients. The latter approach is demonstrated in Fig. 4.28. The original image

simon.sirca@fmf.uni-lj.si



4.7 Discrete Wavelet Transformation + 239

Fig. 4.27 A two-dimensional DWT of a 512× 512 image. (The original image can be found on
the website of the book, the “almost” original is in the bottom right panel of Fig. 3.7.) The 64× 64
level-3 approximate image f 3 is in the top left corner, encircled (outward and clockwise) by the
64× 64 detail images d3h, d3d, d3v, followed by their 128× 128 predecessors d2h, d2d, d2v and
their 256× 256 parents d1h, d1d and d1v

(see caption of Fig. 4.27) has been transformed by a 4-level DWT based on db4
wavelets, the transform truncated, and inverted.

The image format standard JPEG2000 (also known as J2K) [70] exploits a special
variety of the DWT relying on biorthogonal filters. The biorthogonal DWT utilizes
two sets of low-pass filters, two sets of high-pass filters (and their inverses), thus
implying two types of wavelets. For lossy J2K compression one uses the 9/7 Cohen-
Daubechies-Feauveau (CDF) wavelets, while the lossless compression relies on 5/3
CDFwavelets [71, 72]. Their coefficients and further application details can be found
in Sects. 3.7 and 3.8 of [67].

simon.sirca@fmf.uni-lj.si



240 4 Transformations of Functions and Signals

Fig. 4.28 Image compression by DWT. The original image is a 512× 512 matrix of pixels with
256 gray levels. Shown are the DWT reconstructions by using the db4 wavelets up to refinement
level L = 4 and keeping the largest [Left] 262 transform coefficients (99.9% compression) and
[Right] largest 655 coefficients (99.8% compression). Compare to the top two panels of Fig. 3.7
as well as Problems3.10.4 and 4.8.4

Software Implementations
For C/C++ environments, the DWT with Daubechies and CDF wavelets is imple-
mented in theGSL library, while the libdwt project [73] focuses on DWT and CWT
with biorthogonal wavelets optimized for image processing. PyWavelets [74] is a
free open-sourcePython-based library offering several varieties of thewavelet trans-
form that also supports custom wavelets. The one-dimensional and two-dimensional
DWT are implemented in bothMathematica and theWavelet Toolbox ofMatlab.
For freely accessibleMatlab routines, see [75–77].

4.8 Problems

4.8.1 Fourier Spectrum of Signals

The discrete Fourier transformation (DFT, Sect. 4.2.2) is the fundamental tool of
signal analysis. First we confirm the formulas for known pairs of periodic signals
f = { f j }N−1j=0 and their transforms F = {Fk}N−1k=0 = FN [ f ], for example,

f j = e i aj/N ⇔ Fk =
1
N

{(
e i a − 1

)/(
e i(a−2kπ)/N − 1

)}
,

Re f j , Im f j ∼ N (0, 1)⇔ Re Fk , Im Fk ∼ N (0, N ) ,

where N (µ, σ 2) is the normal distribution with mean µ and variance σ 2.

simon.sirca@fmf.uni-lj.si



5.5 Linear Regression 281

the SVD help us to eliminate the superfluous combinations of the basis functions.
We denote

Ai j =
φ j (xi )

σi
, bi =

yi
σi

,

and perform the “thin” SVD of the matrix A = U!V T ∈ Rn×m (p. 142) where
n ≥ m. The matrix U = (u0, u1, . . . , um−1) has columns ui of dimension n, the
matrix V = (v0, v1, . . . , vm−1) has columns vi of dimension m, and the diagonal
matrix ! = diag(λ0,λ1, . . . ,λm−1) contains the singular values λi . We obtain the
vector of parameters a by summing

a =
m−1∑

i=0

uT
i b
λi

vi .

The covariance matrix of the parameters a is cov(a j , ak) =
∑m−1

i=0 Vji Vki/λ2
i and its

diagonal elements represent the individual variances

σ2(a j ) =
m−1∑

i=0

V 2
j i

λ2
i

. (5.48)

We should pay attention to all singular valuesλi for which the ratioλi/λmax is smaller
than ≈ nεM. Such values increase the error (5.48) and indicate that the inclusion of
newmodel parameters is meaningless. Moreover, they do not contribute significantly
to the minimization of χ2, so we exclude them. We do this by setting 1/λi = 0 (for
a detailed explanation, see the comment to the Fitsvd algorithm in [25]). We may
exclude also those singular values for which the ratio λi/λmax is larger than ≈ nεM,
until χ2 starts to increase visibly.

5.5.3 Robust Methods for One-Dimensional Regression

Like all estimates of location and dispersion, regression methods are sensitive to out-
liers (Sect. 5.2.1). The straight line LS in Fig. 5.14 (left) corresponds to the standard
regression on the data {(xi , yi )}15i=0 with unknown errors: here we minimize the sum
of the squares of the residuals ri = yi − (a1xi + a0), so the straight line LS fails to
describe the bulk of the data because of the outliers at x0, x1, and x3. If we remove
these three outliers, we obtain the straight line denoted by LS−013. Robust regression
methods [29] yield a good description of the majority of the data without the need
to remove individual outliers by hand.

The literature on robust regression techniques is abundant: for the identification of
outliers (regression diagnostics) see [30]; for a review of methods see [31]. Numer-
ous methods exist, all having some advantages and deficiencies; many of them are
awkward to implement or entail high numerical costs. One of such methods is the
regression in which it is not

∑
i r

2
i that is minimized, but rather

∑
i |ri | — an L1-

type estimator; see e.g. [32, 33]. Here we describe two procedures with proven good
properties for everyday use.

simon.sirca@fmf.uni-lj.si



282 5 Statistical Analysis and Modeling of Data

Fig. 5.14 Robust linear regression. (Example adapted from [14].) [Left] The regression straight
line by the method of least squares (LS), by omitting three outliers (LS−013), and by the iterative
reweightingmethod (IRWLS). [Right] The residuals ri and the estimate of dispersion by the IRWLS
method

Fig. 5.15 Robust linear regression on the data with many outliers. [Left] Only the LMS method
correctly describes the majority of the data. [Right] The function being minimized in the LMS
method. The symbol • denotes the global minimum

IRWLS The iterative reweighted least squares method (IRWLS) closely follows the
logic of M-estimates of location (Sect. 5.2.2 and algorithm on p. 257). The iteration
to the final values of the parameters a0 and a1 of the regression straight line typically
converges in ≈ 30 steps. The determination of their uncertainties, the estimate for
the dispersion, and other details are discussed in [14], p. 105. An example is shown
in Fig. 5.14 (left, IRWLS line). Figure5.14 (right) shows the residuals ri in the LS
and IRWLS methods.

simon.sirca@fmf.uni-lj.si



5.5 Linear Regression 283

Input: Values (xi , yi )n−1
i=0 , initial approximations for a0 and a1 from standard

linear regression, relative precision ε
for i = 0 to n − 1 do

r (0)i = yi − (a0 + a1xi );
end
σ̂ = 1.4826 ·median(|r (0)i | , r (0)i &= 0);
k = 0;
while ( maxi |r (k+1)

i − r (k)i | > εσ̂ ) do
for i = 0 to n − 1 do

wi = W (r (k)i /σ̂); // W (t) given by (5.21)
end
Compute new estimates for a0 and a1 by solving the linear system

a0
∑

i

wi + a1
∑

i

wi xi =
∑

i

wi yi

a0
∑

i

wi xi + a1
∑

i

wi x2i =
∑

i

wi xi yi

for i = 0 to n − 1 do
r (k+1)
i = yi − (a0 + a1xi );

end
k = k + 1;

end
Output: a0, a1 by the IRWLS method

LMS The second method resembles standard linear regression, except that the
median of the squares of the residuals ri = yi − (a1xi + a0) is minimized, hence
its name, least median of squares (LMS). We seek a0 and a1 such that

median(yi − a1xi − a0)2 = min . (5.49)

The LMSmethod [34] is very robust and behaves well even in the rare circumstances
in which IRWLS fails. An example is shown in Fig. 5.15 (left). We have a sample
of n1 = 30 data yi = axi + b + ui , where a = 1, b = 2, xi ∼ U (1, 4), and ui ∼
N (0, 0.2), and a set of n2 = 20 points assumed to be outliers, xi ∼ N (7, 0.5), yi ∼
N (2, 0.5). We would like to fit a straight line to the data such that the result will be
oblivious to the outlier portion of this compound set. Neither the LS nor the IRWLS
method yield meaningful results: both simply run the line through both data portions.
In contrast, the LMS line fits the non-outlier group well.

The main nuisance of the LMS method is precisely the numerical minimiza-
tion (5.49). The function we wish to minimize with respect to the parameters a j

has O(nm+1) local minima, where n is the number of data points (xi , yi ) and m is
the degree of the regression polynomial. In the example from the Figure we have
n = n1 + n2 = 50 and m + 1 = 2 (straight line), so there are ≈ 2500 local minima,
among which the global minimum needs to be located, as shown in Fig. 5.15 (right).

simon.sirca@fmf.uni-lj.si



284 5 Statistical Analysis and Modeling of Data

This is best accomplished — there are dangers since the function is continuous, but
not continuously differentiable — by forming the function

M(a1) = min
a0

{
median (yi − a1xi − a0)2

}
,

where for each a1 we determine a0, and thenminimize M(a1)with respect to a1. This
implementation becomes very costly at large n. Fast computations of the regression
parameters by LMS methods are non-trivial: see [35, 36].

5.6 Non-linear Regression

In non-linear regression the dependence of the model function on regression param-
eters is non-linear, for example

f (x; a) = a0 + a1 ea2x + a3 sin(x + a4) .

If we arrange the observations yi at xi into vectors x = (x0, x1, . . . , xn−1)
T and y =

(y0, y1, . . . , yn−1)
T, and the components of the regression function into f (x; a) =(

f (x0; a), f (x1; a), . . . , f (xn−1; a)
)T,where a= (a0, a1, . . . , ap−1)

T,wecandefine
the measure of deviation as

χ2 =
(
y − f (x; a)

)T
"−1

y

(
y − f (x; a)

)
. (5.50)

If the measurement errors are uncorrelated, the covariance matrix is diagonal, " y =
diag (σ2

0,σ
2
1, . . . ,σ

2
n−1), and the above expression can be simplified to

χ2 =
n−1∑

i=0

(
yi − f (xi ; a)

)2

σ2
i

. (5.51)

The minimization of χ2 now implies solving a system of p (in general non-linear)
equations ∂χ2/∂a j = 0 ( j = 0, 1, . . . , p − 1). Such problems can be solved itera-
tively: we ride on the sequence

a(ν+1) = a(ν) + #a(ν) , ν = 0, 1, 2, . . . , (5.52)

where#a(ν) is obtained by solving a linear problem, to approach the optimal param-
eter set. In the νth step the update can be calculated by minimizing

χ2(#a) =
[
y − f

(
a(ν) + #a

)]T
"−1

y

[
y − f

(
a(ν) + #a

)]
,

where we have omitted the x-dependence of f . If #a is small, f can be expanded
as f

(
a(ν) + #a

)
≈ f

(
a(ν)

)
+ J

(
a(ν)

)
#a, where J is the Jacobi matrix with the

elements

simon.sirca@fmf.uni-lj.si



6.8 Independent Component Analysis ! 369

6.8 Independent Component Analysis !

Independent component analysis (ICA) is a multivariate analysis technique from
the class of latent-variable methods (another representative is the factor analysis
discussed in Sect. 5.12). The classical problem that can be solved by ICA is the
decomposition of an unknown mixture of signals to its independent components.
For example, we measure the signals x1(t), x2(t), and x3(t) of three microphones
recording the speech of two persons (sources) s1(t) and s2(t). We assume that the
signals are linear combinations of the sources,




x1(t)
x2(t)
x3(t)



 =




A11 A12

A21 A22

A31 A32




(
s1(t)
s2(t)

)
,

where neither the sources si nor the matrix elements Aij are known. A generalization
of this example is the famous cocktail-party problem, inwhichwewish to reconstruct
the signals of r speakers based on n measurements of signals from m microphones
arranged in a room. The components of the vector representing the sources are the
latent variables mentioned above.

A very similar problem is illustrated in Fig. 6.16 (see also Problem6.10.4 and
Fig. 6.28). The Figure shows eight traces of an electr-cardiogram of a pregnant
woman recorded at various places on the thorax and the abdomen. In some signals
(x3, x2 and, above all, x1) we can also see the child’s heartbeat which has a higher
frequency than the mother’s heartbeat, but its amplitudes are smaller and partly
masked by noise. The task of ICA is to extract the original signals sources and to
explain the mixing of these sources into the measured signals. The procedure should
be done such that the computed sources are mutually as independent as possible.

Here we discuss only static linear independent component analysis, for which
we assume that each vector of correlated measurements x = (x1, x2, . . . , xm)T is
generated by linear mixing of independent sources s = (s1, s2, . . . , sr)T, thus

x = As , (6.33)

whereA ∈ Rm×r is a time-independent mixingmatrix. Usually the number of sources
is smaller than the number of measured signals, r ≤ m (as above, r = 2 hearts and
m = 8 electrodes). We neglect measurement errors that, in principle, could be added
to the right side of (6.33). We assume that noise is already contained in the sources
s: we are performing a noiseless ICA.

The independence of the sources is expressed by the statement that their joint prob-
ability density factorizes as p(s1, s2, . . . , sr) = p1(s1)p2(s2) · · · pr(sr) and therefore
also 〈f (si)g(sj)〉 = 〈f (si)〉〈g(sj)〉 for arbitrary functions f and g. A pair of statistically
independent variables (si, sj &=i) is uncorrelated and has the covariance cov(si, sj) = 0;
the inverse is not necessarily true. This distinguishes ICA from the decorrelation of

simon.sirca@fmf.uni-lj.si



370 6 Modeling and Analysis of Time Series

Fig. 6.16 Electro-cardiogram of a pregnant woman. The relatively weak and noisy signal of the
child’s heartbeat, visible in signals x1, x2, and x3, mixes with the signal of the mother’s heartbeat.
(Example adapted from [55] based on data from [56].)

variables by PCA (Sect. 5.8), in which principal components of multivariate data are
determined by maximizing their variances and minimizing their mutual correlations.

In the following we assume that the average of an individual vector of sources
is zero, 〈s〉 = 0, and that the corresponding covariance matrix is diagonal, "ss =
cov(s, s) = ssT = I . Other than that, the components si may have any probability
distribution except Gaussian. The requirement for a non-Gaussian character of the
distributions is essential, otherwise the ICA method allows for the determination of
the independent components only up to an orthogonal transformation. At most one
component of the signal is allowed to be Gaussian: for a detailed explanation see
Sect. 15.3 in [55] and [57, 58].

6.8.1 Estimate of the Separation Matrix and the FastICA
Algorithm

According to the model (6.33) with the matrix A of full rank, a separation or unmix-
ing matrix W exists by which the sources s can be exactly reconstructed from the
measured signals x:

simon.sirca@fmf.uni-lj.si



6.8 Independent Component Analysis ! 371

s = Wx , W =
(
ATA

)−1AT = (w1,w2, . . . ,wr)
T (6.34)

(see (3.15)). But in practice, neither the matrix A nor the vector of the sources s in
the model (6.33) are known. In order to reconstruct s, we therefore attempt to find
an estimate of the separation matrixW . We resort to several additional requirements
that should be fulfilled by the one-dimensional projections of the measured signals,

yi = wT
i x , i = 1, 2, . . . , r .

If the vector wi is equal to some row of the generalized inverse W of A (see (6.34)),
the projection yi is already one of the independent components, yi = si. Since A (or
W ) is unknown, we try to find the vectors wi such that the probability distribution
of the projection yi will be as non-Gaussian as possible. Seeking such vectors is the
key part of the independent component analysis.

The deviation of the distribution of a continuous random variable Y from the
normal (“Gaussian”) distribution can be measured by the entropy

H (Y ) = −
∫

p(y) log p(y) dy ,

where p(y) is the probability density of Y . Of all random variables with the same
variance the normal random variable has the maximum entropy [26]. The value of
the entropy can therefore be used as a tool to gauge the similarity of some unknown
distribution to the normal distribution. Computationally it is more convenient towork
with negentropy

I(Y ) = H (YGauss) − H (Y ) , YGauss ∼ N (0, 1) ,

which is a non-negative quantity and is equal to zero only in the case that both YGauss
and Y are distributed normally with zero average and unit variance.

For an exact calculation of I(Y ) we need the probability density p(y), which we
almost never know in practice. We therefore use approximations of the negentropy,
most often [57]

I(Y ) ≈
[
〈G(Y )〉 − 〈G(YGauss)〉

]2
, (6.35)

where G(y) is a non-quadratic function of y (two popular choices are given in
Table 6.2). We compute the estimate yi for a single independent component si by
finding a vectorwi such that the projection yi = wT

i xwill have maximum negentropy
I(yi) (then its probability density will least resemble the Gaussian). We achieve the
decomposition to independent components when we ultimately find all vectors wi

(1 ≤ i ≤ r) corresponding to local maxima of I(yi). Since the independent com-
ponents si (or the estimates yi for them) are uncorrelated, they can be computed
individually. Finally, the vectors wi are arranged in the matrix W and we use (6.34)
to compute the independent components s.

simon.sirca@fmf.uni-lj.si



372 6 Modeling and Analysis of Time Series

Table 6.2 Typical choices for the function G and its derivatives appearing in the approximation
of negentropy (6.35) and in the FastICA algorithm to determine the independent components. For
general use we recommend the functions (1) with the parameter α = 1. For signals with pronounced
outliers or super-Gaussian probability distributions, we recommend the functions (2)

G(y) G ′(y) G ′′(y) Remark

(1) 1
α log cosh αy tanh αy α(1 − tanh2 αy) 1 ≤ α ≤ 2

(2) −e−y2/2 y e−y2/2 (1 − y2) e−y2/2

The FastICA Algorithm

The independent components of the signals xi = (x1, x2, . . . , xm)Ti , which are mea-
sured at n consecutive times (0 ≤ i ≤ n − 1), can be determined by the FastICA
algorithm described in the following. The measured signals are first arranged in the
matrix

X = (x0, x1, . . . , xn−1)
T ∈ Rn×m ,

in which each of the n rows represents onem-variate data entry (for example, voltages
on m microphones at time t = n$t). We compute the mean x by (5.59) and the
covariancematrix"xx by (5.65).Wediagonalize"xx as"xx = U%UT and thus obtain
the orthogonal matrixU and the diagonal matrix %. The data is then transformed as

xi ←− %−1/2UT(xi − x) , i = 0, 1, . . . , n − 1 . (6.36)

The transformation (6.36) is known as data whitening and is equivalent to a decom-
position of the standardized data to their principal components (see Sects. 5.8.2 and
5.8.3). Whitening removes any trace of scale or correlation from the data. We then
follow the algorithm [59]:

1. Choose the number of independent components r you wish to determine.
2. Randomly initialize the vectors w1,w2, . . . ,wr (wk ∈ Rm) normalized to

‖wk‖2 = 1, and arrange them in the matrix W = (w1,w2, . . . ,wr)
T ∈ Rr×m.

3. Perform a symmetric orthogonalization of W ,

W ←−
(
WWT)−1/2W .

This step ensures that all previously foundwk aremutually orthogonal. The square
root of the matrix is computed as described in Appendix A.8.

4. For each k = 1, 2, . . . , r compute new vectors

wk ←− 1
n

{
n−1∑

i=0

xi G ′(wT
k xi
)
− wk

n−1∑

i=0

G ′′(wT
k xi
)
}

, (6.37)

simon.sirca@fmf.uni-lj.si



6.8 Independent Component Analysis ! 373

Fig. 6.17 Typical convergence in the FastICA algorithm applied to the relatively complex signals
from Fig. 6.16. [Left] The difference of the scalar product |w(ν)T

k w(ν−1)
k | from 1 in subsequent

iterations (ν) in the case eight independent components (k = 1, 2, . . . , 8). [Right] The convergence
of eight components of the vector w1 in consecutive iterations (ν)

where the function pair G ′(y) and G ′′(y) can be chosen from Table 6.2. This
step is the crucial part of the algorithm ensuring that the iteration leads to the
fixed point corresponding to the maximum of negentropy (6.35). Normalize the
obtained vectors to unit length, wk ←− wk/‖wk‖2.

5. Repeat items 3 and 4 until convergence is achieved in all components of the
vectors wk . A good measure of convergence is the configuration in which the
direction of the vector wk in consecutive iterations (ν) and (ν − 1) no longer
changes, i.e. when the absolute value of the scalar product |w(ν)T

k w(ν−1)
k | is close

to unity. Typically a few times ten iterations are needed (see Fig. 6.17).
6. The independent components are the rows of the matrix S = WX T ∈ Rr×n.

The FastICA algorithm allows us to compute the matrix of independent compo-
nents (sources) S in which the sources appear to be arranged arbitrarily. Namely, any
permutation P of the source components s in (6.33) implies just a different mixing
matrix, x = (AP−1)Ps. From the viewpoint of the ICA method, the vectors s and Ps
are indistinguishable.

Moreover, the signals S determined by ICA are given up to a multiplicative con-
stant: we may choose any constant cj to divide the source sj and multiply the jth row
of the mixing matrix A without modifying the product As. Even vectors of opposite
directions (wk and −wk as the rows ofW ) that frequently occur during the iterations
of the FastICA algorithm, are therefore equivalent.

Stabilization of the FastICA Algorithm

The iteration step (6.37) follows from the Newton’s method to search for the max-
imum of negentropy, so occasionally we may encounter convergence problems. In

simon.sirca@fmf.uni-lj.si



386 6 Modeling and Analysis of Time Series

6.10.4 Independent Component Analysis

Independent component analysis (ICA) is a method that can be applied to a set of
measured signals xj(t) in order to determine independent components (sources) sj(t)
that caused these signals, as well as the nature of the mixing of sources. We assume
that the measured signals and their sources are linearly related,

x(t) = As(t) ,

where A is the mixing matrix (see Sect. 6.8). At each instant t the sources s (for
example, speakers in a room) and the measured signals x (for example, voltages on
the microphones) have several components.⊙

In the first part of the Problem we assume that the mixing matrix is known.
Suppose that we have four sources:

s1i = sin(10π i/n) ,
s2i = exp[−10(i − n/2)2/n2] + 0.2[R(0, 1) − 0.5] ,
s3i = sin3(40π i/n) exp(−1.5i/n) ,
s4i = sin(100 i2/n2) ,

(6.41)

shown in Fig. 6.27 (left). The index imeasures the time, t = i$t (i = 0, 1, . . . , n − 1)
and n = 1000.WeuseR(0, 1) to denote a uniformly distributed randomnumber from
the interval [0, 1]. The matrix A mixes the sources into the measured signals,

Fig. 6.27 [Left] The original signals (sources) from (6.41). [Right] The measured signals which
are known mixtures of the sources (6.42)

simon.sirca@fmf.uni-lj.si



6.10 Problems 387





x1(t)
x2(t)
x3(t)
x4(t)



 = 1
5





−1 2 −1 1
2 1 3 −2

−2 2 −1 1
1 −2 3 −3





︸ ︷︷ ︸
A





s1(t)
s2(t)
s3(t)
s4(t)



 , (6.42)

which are shown in Fig. 6.27 (right). Use the FastICA algorithm described in
Sect. 6.8.1 to determine the independent components (sources) s from the signals x.
Compare the computed sources to the original ones (6.41).

In the case described here the number of sources is equal to the number of mea-
sured signals, so the model x = As is exactly invertible, s = Wx = A−1x. The com-
puted and exact sources can therefore be accurately compared. Discuss the case with
fewer sources than signals (invent your own mixing matrix).⊕

Perform the independent component analysis of eight electro-cardiogram
(ECG) traces of a pregnant woman shown in Fig. 6.16 [56]. There are 2500 voltage
readouts with a sampling frequency of 500Hz. The final result of the analysis are
the eight independent components which should closely resemble those of Fig. 6.28.
Observe the convergence of the algorithm by monitoring the direction of the vectors

Fig. 6.28 Independent components (sources) of the signals shown in Fig. 6.16. The child’s fast
heartbeat is clearly identifiable in the independent components IC2 and IC4. Other components
display the mother’s heartbeat, except IC8 which has probably been generated by breathing during
the measurement

simon.sirca@fmf.uni-lj.si



7.9 Implicit Single-Step Methods 421

taken care of. We can explicitly solve (7.33) for x and thus obtain a system of linear
equations for the quantities ki :

ki = h f



xn + αi h , yn +
i−1∑

j=1

αi j k j



+ h J (n)
y

i∑

j=1

γi j k j + h2γi J (n)
x .

The concluding part of each time step— (7.34)— remains the same. Above we have
used the abbreviations

αi =
i−1∑

j=1

αi j , γi =
i∑

j=1

γi j , J (n)
x = ∂ f

∂x
(xn, yn) , J (n)

y = ∂ f
∂ y

(xn, yn) .

Implicit differential equations Implicit equations of the form M y′ = f (x, y)
with constant non-singular matrices M can be rewritten in the equivalent form
y′ = M−1 f (x, y), resulting in

Mki = h f



xn + αi h, yn +
i−1∑

j=1

αi j k j



+ h J (n)
y

i∑

j=1

γi j k j + h2γi J (n)
x .

Bysimple transformations among thevariables andby exploiting the banded structure
of the matrices M and Jy , the numerical efficiency of Rosenbrock methods can be
strongly enhanced [20]. In similar ways, problems with non-constant matrices M(x)
can be harnessed [23].

7.10 Stiff Problems

To obtain a feeling about the concept of stiffness, consider the problem

y′(x) = −100
(
y(x) − cos x

)
− sin x , y(0) = 1 , (7.35)

with the analytic solution y(x) = cos x (example adapted from [24]). Figure 7.10
shows its numerical solution by using the implicit (IE, left) and explicit (EE, right)
Euler’s method. The correct solution is the smooth curve in the center of the left
panel. All other solutions with different initial conditions converge to this solution,
but only after rapidly ramping up or down, following almost vertical trajectories.
Such short-lived transient behavior that is dictated by the differential equation itself
but is absent in the actual solution is one of the landmarks of a stiff problem.

Figure 7.10 also reveals that the implicit Euler’s method nicely follows the solu-
tion while the explicit variant diverges unless the step size is sufficiently reduced.
Providing stability in addition to accuracy is therefore another challenge in stiff

simon.sirca@fmf.uni-lj.si



422 7 Initial-Value Problems for ODE

Fig. 7.10 Solving the stiff differential equation y′ = −100(y − cos x) − sin x with the initial con-
dition y(0) = 1. [Left] Using the implicit Euler’s method with step size h = 0.0215. Also shown
are families of solutions with various initial conditions along the y = 2 and y = −1 axes. [Right]
Solutions by the explicit Euler’s method with h = 0.0215 (unstable) and h = 0.0100 (stable)

Fig. 7.11 The error of the
numerical solution of (7.35)
at x = 1 as a function of the
step size h. The explicit
Euler scheme (EE) is
unstable unless a small
enough h is used, while the
implicit method (IE) is stable
for any h

problems. Figure 7.11 shows that for, say, single-digit precision of y(1), the explicit
method requires about five times shorter steps than the implicit one, and the dis-
parity becomes much more pronounced if the leading coefficient −100 in (7.35)
is increased. Thus, as a rule, stiff problems should be integrated by using implicit
schemes: although in general the solution of implicit equations at each step may
represent a complication, implicitness provides the needed stabilization.

This leads to the suspicion that initial-value problems with ordinary differential
equations might be stiff when two or more very different scales are involved in the
solution, for example, two characteristic times. Thinkof a robotic arm thatmoveswith
angular velocities of ≈1Hz, which we hit by a small hammer, exciting oscillations

simon.sirca@fmf.uni-lj.si



454 7 Initial-Value Problems for ODE

which has four maxima at (x, y) = (1,±1) and (−1,±1) with values Em = 1/e2

[61]. Let the particle with mass M = 1 and energy E impinge towards the central
part of the potential from large distances with impact parameter b (parallel to the
x-axis and at constant distance b from it).

Plot some typical particle trajectories in the (x, y) plane as a function of the
parameter b (Fig. 7.25 (top right)). Compute the scattering angles φ for a large set
of values of b, −3 ≤ b ≤ 3, at E/Em = 1.626 (regular scattering) and at E/Em =
0.260 (chaotic scattering). Look closer at the obtained results in the ever narrower
regions of b, e.g. for −0.6 < b < −0.1, −0.400 < b < −0.270, and −0.3920 <

b < −0.3770 (Fig. 7.25 (bottom left and right)). Compute the time delay (time spent
by the particle in the central part of the potential) as a function of b. By using a
constant step-size integrator the delay is simply proportional to the number of steps
taken.

7.14.11 Hydrogen Burning in the pp I Chain

Fusion of hydrogen nuclei occurs in stars with masses less than ≈1.3M% in three
branches of the pp chain. The first stage (pp I branch) involves the processes [62]

1H+1 H −→ 2H+ e+ + νe (λpp) ,
1H+1 H+ e− −→ 2H+ νe (λ′

pp) ,

2H+1 H −→ 3He+ γ (λpd) ,
3He+3 He −→ 4He+1 H+1 H (λ33) ,

where λi are the reaction rates. The pp I branch contributes 85% to the solar lumi-
nosity, but the process rates in it are very different due to a large span of reaction
cross-sections and Coulomb barriers [63, 64]. We express λi in units of reactions per
unit time per (mol/cm3)N−1,where N is the number of interacting particles excluding
photons.At temperatures in the solar interior (≈15 ·106 K) they areλpp = 8.2 · 10−20,
λ′
pp = 2.9 · 10−24, λpd = 1.3 · 10−2, λ33 = 2.3 · 10−10.
For the listed processes λ′

pp ' λpp ' λ33 ' λpd. The first two processes are
by far the slowest ones, as they are governed by the weak interaction. Here we
approximate λ′

pp = 0. The equations for the pp I branch then become

dnp
dt

= −λppn2p − λpdnpnd + λ33n23 ,

dnd
dt

= λpp
n2p
2

− λpdnpnd ,
dn3
dt

= λpdnpnd − λ33n23 ,

dn4
dt

= λ33
n23
2

,

(7.69)

simon.sirca@fmf.uni-lj.si

= = =

=



7.14 Problems 455

Fig. 7.25 Chaotic scattering on the potential V (x, y) = x2y2 exp
[
−(x2 + y2)

]
. [Top left] The

potential V (x, y). [Top right] Dependence of the solution on initial conditions x(0) = 3, y(0) =
b, ẋ(0) = 0, and ẏ(0) = −√

2.0(E − V (x(0), y(0)))/M with parameters M = 1, E = 0.260Em.
Shown are the solutions at three different impact parameters b = −0.3915, 0.3905, and 0.3895.
[Bottom left] Dependence of the scattering angle φ on b with −0.60 ≤ b ≤ −0.13. [Bottom
right] The zoom-in in the region −0.392 ≤ b ≤ −0.377 (denoted by dashed vertical lines in the
Figure at left). We are witnessing classical chaos: we observe a large sensitivity of the system to
the initial conditions, and self-similarity (equal or similar structures appear at different scales)

where we have denoted the isotope concentrations by np = n(1H), nd = n(2H), n3 =
n(3He), and n4 = n(4He).⊙

Solve the system (7.69) on the time interval 1010s ≤ t ≤ 1022s. The initial
condition for np can be computed from the estimate (λppnp)−1 ≈ 1010 years which
is valid at the conditions in the solar interior, and we set nd = n3 = n4 = 0. At first
you may restrict the computation to large times, when 2H and 3He are in equilibrium
(dnd/dt = dn3/dt = 0). In that case the stiff system of four equations reduces to a
non-stiff system of two equations. To consider all times except the shortest, assume
that 2H is in equilibrium: then the equation for 3He can be solved analytically by

simon.sirca@fmf.uni-lj.si



456 7 Initial-Value Problems for ODE

Fig. 7.26 Examples of stiff differential equations. [Left] Hydrogen burning in the pp I chain (7.69).
The solution for nd lies below the shown area. [Right] Limit cycles of the Oregonator (7.70). The
symbols ◦ and • denote the initial conditions

assuming that the concentrations of 1H and 4He do not change substantially, and by
using the solution for n3 in the equations for np and n4. For finding the solution at
arbitrary times, use an integrator tailored to stiff systems (see Fig. 7.26 (left)).⊕

Augment the basic system of equations for the pp I branch with contributions
of heavier isotopes, and compare the results. Use the reactions given in [62–65],
which list the reaction rates also for temperatures that are different from those in the
solar interior.

7.14.12 Oregonator

Oregonator is a domesticated name for the chemical reaction of HBrO2, Br−, and
Ce(IV). The dynamics is described by a stiff set of equations [66]

y′
1 = κ1 (y2 + y1 (1 − αy1 − y2)) ,

y′
2 = κ2 (y3 − y2 (1+ y1)) ,

y′
3 = κ3 (y1 − y3) ,

(7.70)

where κ1 = 1/κ2 = 77.27, κ3 = 0.161, and α = 8.375 · 10−6. As expected from a
stiff system, the solutions change over many orders of magnitude (Fig. 7.26 (left and
right)).⊙

Solve the system (7.70) with initial conditions y1(0) = 3, y2(0) = 1, y3(0) =
2. Use an explicit integrator of your own choice and the implicit fifth-order integrator
Radau 5 described on p. 417. If possible, resort to adaptive step size control in both
cases. Plot the solutions y1(x), y2(x), and y3(x) for 0 ≤ x ≤ 360. The solutions

simon.sirca@fmf.uni-lj.si



428 7 Initial-Value Problems for ODE

Fig. 7.14 Stability of the fourth-order BDF method (7.27). [Left] A(α)-stability with angle α =
73.35◦. [Right] Stiff stability with D = 0.667. See also Fig. 7.7

method is therefore A(π/2)-stable. We also define “stiff stability” for which we
require the stability region Re z < −D for some D > 0 and a “sufficient precision”
of the method within the rectangle −D ≤ Re z ≤ a, −θ ≤ Im z ≤ θ for some a > 0
and θ ∼ π/5 (Fig. 7.8 (right)).

BDF methods of orders 3 ≤ p ≤ 6 (Fig. 7.7) correspond to α = 86.03◦, D =
0.083 (k = 3), α = 73.35◦, D = 0.667 (k = 4), α = 51.84◦, D = 2.327 (k = 5),
α = 17.84◦, D = 6.075 (k = 6). Figure 7.14 shows the region of A(α)-stability and
stiff stability for the fourth-order method (7.27). A(α)-stable multi-step methods of
higher orders with α ! π/2 do exist, but they possess large leading error constants
and they are only of limited use. In order to cross the Dahlquist barrier more general
multi-step methods can be devised: see [20].

7.12 Geometric Integration !

In the following we use the variable pair (t, y) instead of (x, y), in the spirit of
dynamical analysis pervading this section. We are interested in the solutions of
equations ẏ = f ( y) where ˙ denotes the time derivative, especially in the con-
text of autonomous Hamiltonian systems [27]. Such systems are described by the
Hamiltonians H( p, q), where

ẏ = f ( y) = J−1∇H( y) , y =
(
p
q

)
, J =

(
0 1

−1 0

)
, (7.42)

simon.sirca@fmf.uni-lj.si



7.12 Geometric Integration ! 429

p ∈ Rd , q ∈ Rd and ∇ = (∇p,∇q)
T = (∂p1 , ∂p2 , · · · , ∂pd , ∂q1 , ∂q2 , · · · , ∂qd )

T. The
dynamical equations for the canonical variables p and q are

ṗ = −∇q H( p, q) , q̇ = ∇pH( p, q) (7.43)

(see also Appendix H). How successful are the methods of previous sections in such
problems? We provide the answer from several viewpoints. All single-step methods
discussed so far can be understood as mappings of the solution from “time” nh to
“time” (n + 1)h,

yn+1 = φh( yn) . (7.44)

Does the numerical solution preserve the invariants of the continuous problem, for
example, the Hamiltonian H( p, q)? Does numerical integration of the Hamiltonian
system (the solution of the initial-value problem) preserve the symplectic structure of
the phase space?Wemay also ask whether the integrator is symmetric and reversible.
A numerical method that satisfies at least one of these requirements is known as a
geometric integrator.

7.12.1 Preservation of Invariants

A non-constant function I ( y) is called the first integral (or invariant, or constant of
motion) of (7.42) if

∇ I ( y) · f ( y) = 0 ∀ y . (7.45)

This means that at any point of the phase space (along any solution y) the gra-
dient ∇ I ( y) is orthogonal to the vector field f ( y). A nice scalar example is the
mathematical pendulum with the Hamiltonian H(p, q) = 1

2 p
2 − cos q. The equa-

tions of motion (Newton’s law) are ṗ = − sin q and q̇ = p, which can be writ-
ten in the form (7.42) with f ( y) = (− sin q, p)T. Obviously ∇H( y) · f ( y) =
(p, sin q)(− sin q, p)T = 0.A further example are the three invariants of the classical
Kepler problem, discussed in Problem 7.14.13.

Let us test some integrators on an even simpler case of the one-dimensional
harmonic oscillator (linear pendulum) with the spring constant k2, described by the
Hamiltonian

H(p, q) = 1
2

(
p2 + k2q2) , (7.46)

with the analytic solution

(
p̃(h)
q̃(h)

)
=

(
cos h −k2 sin h
sin h cos h

)(
p(0)
q(0)

)
(7.47)

simon.sirca@fmf.uni-lj.si



430 7 Initial-Value Problems for ODE

at time t = h. The basic explicit Euler’s method (7.5) is first order, so it also approx-
imates the solution (7.47) only to first order. This implies

(
p̃(h)
q̃(h)

)

Euler
=

(
1 −k2h
h 1

)(
p(0)
q(0)

)
, (7.48)

which can be seen if one explicit Euler’s step is done for (7.43). Instead of the correct
value of the energy (7.46) we get

1
2 ( p̃

2 + k2q̃2) = 1
2 (1+ k2h2)(p2 + k2q2) ,

which is unbounded when the number of steps goes to infinity, regardless of the step
size h. The RK4 method does not fare much better, as it results in damping

1
2 ( p̃

2 + k2q̃2) = 1
2

(
1 − k6h6/72

)
(p2 + k2q2) .

We also obtain damping with the implicit Euler’s method. Figure 7.15 (left) shows
the solution (p, q) by the explicit Euler’s (7.5), implicit Euler’s (7.30), and implicit
midpoint method (7.31) in the form for an autonomous Hamiltonian system:

yn+1 = yn + h J−1∇H
( 1
2 ( yn + yn+1)

)
. (7.49)

In general, explicit and implicit RK methods preserve only linear invariants. As
an example [20], consider the conservation of mass in the process (7.38): from the
system of equations we see ẏ1 + ẏ2 + ẏ3 = 0, so I ( y) = y1 + y2 + y3 is a linear
invariant of the system. If the coefficients of an m-stage RK method (see (7.8) and
Sect. 7.9) satisfy

Fig. 7.15 [Left] The solution of the harmonic oscillator problem ṗ = −k2q, q̇ = p with initial
condition (p, q) = (1, 0) (large symbol •) and k = 1 by explicit Euler’s (EE), implicit Euler’s
(IE), and implicit midpoint method (IM) in 50 steps of h = 0.2. [Right] The values of H(p, q) =
1
2 (p

2 + k2q2) at current p and q for these three methods

simon.sirca@fmf.uni-lj.si



434 7 Initial-Value Problems for ODE

Fig. 7.16 Evolution of the
Arnold’s cat in the (p, q)
plane for the harmonic
oscillator problem with
k = 1.6. The explicit Euler’s
method (EE) enlarges the
area while the implicit (IE)
reduces it. The implicit
midpoint method (IM)
preserves the area but not its
shape

the trajectory does not change; we just reverse the motion. An invertible linear trans-
formation ρ helps us to define a more general notion of ρ-reversibility. A differential
equation ẏ = f ( y) and the vector field f ( y) are ρ-reversible if

ρ f ( y) = − f (ρ y) ∀ y . (7.57)

An analogous concept can be defined for single-step numerical methods (7.44). The
methodφh is symmetric (with respect to time reversal) ifφh ◦ φ−h = 1. If themethod
φh , applied to a ρ-reversible differential equation, satisfies

ρ ◦ φh = φ−h ◦ ρ , (7.58)

then φh is a ρ-reversible mapping precisely when φh is symmetric. (Symmetry and
ρ-reversibility of a discrete map are equivalent properties.) All explicit and implicit
methods of the RK type satisfy (7.58) if (7.57) is valid. Partitioned RK methods
satisfy the condition (7.58) if ρ can be written in the form ρ(u, v) = (ρ1(u), ρ2(v)),
where ρ1 and ρ2 are invertible mappings. The symplectic Euler’s methods (7.54) are
not symmetric (or ρ-reversible). The Störmer–Verlet methods (7.55) and (7.56) are
symmetric and therefore also ρ-reversible [29].

7.12.4 Modified Hamiltonians and Equations of Motion

Unfortunately it is difficult to find an integration method for general (also non-
integrable) Hamiltonian systems that would preserve the symmetry properties of the
system and its invariants, and at the same time fulfill the symplectic condition [30,
31]. We therefore often opt for methods satisfying at least one of these requirements:
for the integration of astronomical orbits we might prefer to ensure the periodicity
and preservation of energy, while in the study of charged particle motion in storage

simon.sirca@fmf.uni-lj.si



9.7 Higher Order Schemes 551

Table 9.1 Select explicit (E) and implicit (I) difference schemes for the solution of the one-
dimensional diffusion equation vt − Dvxx = Q, where r = D!t/!x2

Scheme Type Order of error Stability

FTCS (9.13) E O(!t)+O(!x2) 0 < r ≤ 1/2

Leapfrog (9.35) E O(!t2)+O(!x2) unstable

Dufort-Frankel (9.36) E O(!t2)+O(!x2) stable

FTCS5 (9.37) E O(!t)+O(!x4) 0 < r ≤ 3/8

BTCS (9.20) I O(!t)+O(!x2) ∀r > 0

Crank–Nicolson (9.21) I O(!t2)+O(!x2) ∀r > 0

un+1
j = 2r

1+ 2r

(
unj+1 + unj−1

)
+ 1 − 2r

1+ 2r
un−1
j + 1

1+ 2r
!tqn

j , (9.36)

which is unconditionally stable, but only conditionally consistent (and thus only
conditionally convergent). Convergence is ensured if r is constant [1].

On the other hand, we can increase the order of the FTCS scheme in the space
variable by replacing the three-point difference by a five-point formula,

un+1
j = unj + r

(
− 1
12

unj+2 +
4
3
unj+1 − 5

2
unj +

4
3
unj−1 − 1

12
unj−2

)
+ !tqn

j .

(9.37)
The resulting scheme is of orderO(!t)+O(!x4) and remains stable, but additional
boundary conditions must be specified at the points x−1 and xN+1 that lie outside of
the definition domain (Fig. 9.2 (right)). In this case we prescribe numerical boundary
conditions. We solve the diffusion equation with homogeneous Dirichlet condition
to this order if we use u−1 = uN+1 = 0 (solution vanishes at the ghost points) or
un−1 − 2un0 + un1 = unN+1 − 2unN + unN−1 = 0 (the secondderivatives at the endpoints
of the rod are zero).

We have described just a few representative explicit schemes for the solution of
the one-dimensional diffusion equation. By Taylor expansions and the method of
undetermined coefficients it is possible to construct many other schemes [1]. As
in ordinary differential equations (Chap.7), an alternative is offered by the implicit
schemes (Table9.1).

It is difficult to formulate a general advice when to use a high-order scheme. Now
and then high-order schemes are a good choice, but if the numerical cost allows it, a
finer discretization might be preferable to increasing the order. Table9.1 summarizes
the basic properties of the methods for the solution of (9.2).

simon.sirca@fmf.uni-lj.si

PDE



9.8 Hyperbolic Equations 555

Table 9.2 Consistency and stability properties of the explicit (E) and implicit (I) difference schemes
for solving the one-dimensional hyperbolic problem vt + cvx = 0with the parameter R = c!t/!x

Scheme Type Order of error Stability

FTFS (9.39) E O(!t)+O(!x) −1 ≤ R ≤ 0

FTBS (9.40) E O(!t)+O(!x) 0 ≤ R ≤ 1

FTCS (9.41) E O(!t)+O(!x2) Unstable

Lax–Wendroff (9.42) E O(!t2)+O(!x2) |R| ≤ 1

Lax–Friedrichs (9.43) E O(!t)+O(!x2/!t) |R| ≤ 1

BTFS (9.44) I O(!t)+O(!x) R ≤ 0

BTBS (9.45) I O(!t)+O(!x) R ≥ 0

BTCS (9.46) I O(!t)+O(!x2) ∀R
Lax–Wendroff (9.47) I O(!t2)+O(!x2) ∀R
Crank–Nicolson (9.48) I O(!t2)+O(!x2) ∀R

The approximations vx ≈ (!
(x)
0 unj )/!x and vxx ≈ (!

(x)
2 unj )/!x2 give us the linear

Lax–Wendroff scheme

un+1
j = unj − R

2
!

(x)
0 unj +

R2

2
!

(x)
2 unj , (9.42)

with the error of orderO(!t2)+O(!x2). (Beware that in this book and in literature
there are other schemes that carry the same name.) From the symbol |ρ(ξ)|2 =
1 − 4R2 sin2(ξ/2)+ 4R4 sin4(ξ/2)we infer the stability criterion |R| ≤ 1. We have
sinned a bit. If we read the scheme backwards, the equation

vt + cvx =
c2!t
2

vxx .

emerges: a diffusive (dissipative) term has appeared at the right-hand side of the
equation that damps the solution for all t > 0. The consequences will be discussed
in Sect. 9.10. Let us also mention the Lax–Friedrichs scheme

un+1
j = 1

2

(
unj+1 + unj−1

)
− R

2
!

(x)
0 unj , (9.43)

which is conditionally stable (|R| ≤ 1) and consistent toO(!t)+O(!x2/!t). Both
schemes will become more familiar in Problem (9.13.2) and will be useful for the
solution of PDE that can be expressed in conservative form (Sect. 9.12).

simon.sirca@fmf.uni-lj.si



10.4 Physically Motivated Discretizations 613

in the second, we include the origin (thus a = 0), so that the first initial condi-
tion (10.56) does not apply. In both problems, the spatial part of the difference oper-
ator is the same as for the diffusion equation (10.53), so precisely that discretization
can be adopted. We span the mesh (r j , θk) on the annulus such that r0 = a, rNr = 1,
θ0 = 0, θNθ = 2π,!r = (1 − a)/Nr , and!θ = 2π/Nθ; if the origin is included, we
have r0 = 0 and !r = 1/Nr . For either of the problems, this boils down to

− 1
!r2

1
r j

[
r j+1/2

(
u j+1k − u jk

)
− r j−1/2

(
u jk − u j−1k

)]
− 1

!θ2
1
r2j

!
(θ)
2 u jk =q jk ,

where q jk = Q(r j , θk) for j = 1, 2, . . . , Nr − 1 and k = 1, 2, . . . , Nθ − 1. When
k = 0, the scheme accesses the point u j−1 in the underlined term; periodicity in θ
comes to rescue by setting u j−1 = u jNθ−1. The remaining components of the solution
are given by the boundary conditions. In the annulus problem we have

u jNθ = u j0 , j = 0, 1, . . . , Nr ,

u0k = f1(θk) , k = 0, 1, . . . , Nθ ,

uNr k = f2(θk) , k = 0, 1, . . . , Nθ .

In the problem that includes the origin we must be careful about—the origin: the
values u0k and q0k actually can not depend on k, thus we abbreviate u0k = u0 and
q0k = q0. The boundary conditions then become

u jNθ = u j0 , j = 0, 1, . . . , Nr ,

uNr k = f2(θk) , k = 0, 1, . . . , Nθ ,

and
4

!r2
u0 − 2!θ

π!r2

Nθ−1∑

k=0

u1k = q0 .

10.5 Boundary Element Method !

The boundary element method (BEM) allows us to solve PDE in non-trivial geome-
tries in which the discretization of the interior of the definition domain is difficult,
while it is relatively easy to express (at least in some approximation) the boundary
conditions on the boundaries of this domain. This is what makes the BEMmethod so
appealing: just by using the information from the boundaries we solve the problem
on the whole domain.

Here the basic outline of BEM is presented, following closely [9]. As an example
we discuss the two-dimensional Laplace equation

simon.sirca@fmf.uni-lj.si



614 10 Difference Methods for PDE in Several Dimensions

∂2φ

∂x2
+ ∂2φ

∂y2
= 0 , (10.57)

which we try to solve in the xy-plane in the domain R bounded by the piecewise
smooth closed curve C . Along the individual segments Ci of C , either Dirichlet or
Neumann boundary conditions are specified:

φ(x, y)= fi (x, y) , (x, y) ∈ Ci ,

∂φ(x, y)
∂n

= f j (x, y) , (x, y) ∈ C j ,

as shown inFig. 10.8 (left). Thenormal derivative∂φ/∂n= nx (∂φ/∂x)+ ny(∂φ/∂y)
is defined by the components of the unit normal vector n = (nx , ny)

T, which points
away from the domain R. A physical example of such a problem is the stationary
state of heat conduction in isotropic matter. The solution φ(x, y) describes the dis-
tribution of temperature in the domain R with the boundary C , some pieces of which
are held at constant temperature, while the others experience a constant heat flux
−λ(∂φ/∂n).

The particular solution of (10.57) is φ(x, y) = A log
√
x2 + y2 + B for (x, y) #=

(0, 0). We choose A = 1/(2π), B = 0, and move the origin from (0, 0) to (ξ, η).
This results in the fundamental solution of the Laplace equation

"(x, y; ξ, η) = 1
4π

log
[
(x − ξ)2 + (y − η)2

]
,

which is defined everywhere except at (ξ, η). Gauss theorem for vector functions,∫
C V · n ds(x, y) =

∫
R ∇ · V dx dy, can be applied to show that for any two solutions

φ1 and φ2 of (10.57), we have

C (1)C

C(2)
(3)

(x   , y   )

(x   , y   )
(x   , y   )

C(N)

(x   , y   )
C(n)

n
C

C
1

3

(n)

(3)
(2)

(1)

(n)

(3)
(2)

(1)

Fig. 10.8 [Left] The domain R with the smooth boundary C on which we solve the two-
dimensional Poisson equation. As an example, we have Dirichlet boundary conditions on segment
C3 and Neumann boundary conditions on C1. [Right] The approximation of the boundary C by
the inscribed polygon with sides C (n)

simon.sirca@fmf.uni-lj.si



10.5 Boundary Element Method # 615

∫

C
[φ2(∂φ1/∂n) − φ1(∂φ2/∂n)] ds(x, y) = 0 .

We choose φ1 = "(x, y; ξ, η) and φ2 = φ(x, y), where φ(x, y) is the desired solu-
tion of (10.57). A few basic tricks of complex analysis are then needed to connect
the desired solution and the fundamental solution by the boundary integral equation

λ(ξ, η)φ(ξ, η) =
∫

C

[
φ(x, y)

∂

∂n
"(x, y; ξ, η) − "(x, y; ξ, η) ∂

∂n
φ(x, y)

]
ds ,

(10.58)
where λ(ξ, η) = 1/2. In the boundary element method, the solution of the basic
problem in the interior of the domain R is obtained by solving this integral equation
on the boundary C . The form of the integral equation remains the same in all parts
of the domain of (10.57), only the parameter λ(ξ, η) changes:

λ(ξ, η) =






0 ; (ξ, η) /∈ R ∪ C ,
1
2 ; (ξ, η) on smooth part of C ,

1 ; (ξ, η) ∈ R .

We approximate the boundary C by a polygon with N sides, as shown in Fig. 10.8
(right), such that

C ≈ C (1) ∪ C (2) ∪ · · · ∪ C (N ) .

Each side C (n) is a segment between the points (x (n), y(n)) and (x (n+1), y(n+1)). We
assume that the values of the functions and their derivatives are constant along indi-
vidual sides C (n), i.e.

φ(x, y) ≈ v(n) ,
∂φ(x, y)

∂n
≈ d(n) , (x, y) ∈ C (n) , n = 1, 2, . . . , N ,

where v(n) is the value of φ and d(n) is the value of ∂φ/∂n in the middle of C (n).
Now the integral equation (10.58) can be approximately written as

λ(ξ, η)φ(ξ, η) ≈
N∑

n=1

[
v(n)D(n)(ξ, η) − d(n)V (n)(ξ, η)

]
, (10.59)

where

V (n)(ξ, η)=
∫

C (n)
"(x, y; ξ, η) ds(x, y) , (10.60)

D(n)(ξ, η)=
∫

C (n)

∂"

∂n
(x, y; ξ, η) ds(x, y) . (10.61)

simon.sirca@fmf.uni-lj.si



616 10 Difference Methods for PDE in Several Dimensions

For some index n, the boundary condition defines either the valuev(n) or the derivative
d(n) (but not both), so there are N unknowns at the right-hand side of (10.59). We
choose (ξ, η) to lie in the middle of the sides C (n) and obtain

1
2
v(m) =

N∑

n=1

[
v(n)D(n)(x (m), y(m)

)
− d(n)V (n)(x (m), y(m)

)]
, m = 1, 2, . . . , N ,

where
(
x (m), y(m)

)
is the midpoint of C (m). In (10.59) we have used λ = 1/2, since

all midpoints lie on the smooth parts of the approximate boundaryC . This is a system
of N linear equation, which can be written as

∑N

n=1
amnzn =

∑N

n=1
bmn , m = 1, 2, . . . , N , (10.62)

where

amn =−V (n)(x (m), y(m)
)
,

bmn =v(n)
[
−D(n)(x (m), y(m)

)
+ 1

2 δm,n
]
,

zn =d(n) ,

if the boundary condition on C (n) prescribes the value φ, or

amn =D(n)(x (m), y(m)
)
− 1

2 δm,n ,

bmn =d(n)V (n)(x (m), y(m)
)
,

zn =v(n) ,

if the boundary condition onC (n) prescribes the derivative ∂φ/∂n. When this system
is solved, each component zn contains precisely the missing information from C (n)

that was not expressed by the boundary condition: if the derivative was specified,
(10.62) provides the value of the function, and vice-versa. We end up with N values
of φ and N values of ∂φ/∂n on N segments of C . Finally, the solution in the interior
of R is obtained by (10.59), in which we set λ = 1,

φ(ξ, η) ≈
N∑

n=1

[
v(n)D(n)(ξ, η) − d(n)V (n)(ξ, η)

]
, (ξ, η) ∈ R .

The elegance of the method has thus been clearly revealed: we obtain the solution on
the whole domain R by manipulating information from its boundaryC . In construct-
ing V(ξ, η) and D(ξ, η), the line integrals (10.60) and (10.61) need to be computed
along individual segments C (n). The segments are parameterized as

x(t) = x (n) − tl(n)n(n)y , y(t) = y(n) + tl(n)n(n)x , 0 ≤ t ≤ 1 . (10.63)

simon.sirca@fmf.uni-lj.si



10.5 Boundary Element Method # 617

Here l(n) is the length ofC (n), while the unit vector n(n) = (n(n)x , n(n)y )T perpendicular
to this segment and pointing away from R has the components

n(n)x = 1
l(n)

(
y(n+1) − y(n)

)
, n(n)y = 1

l(n)
(
x (n) − x (n+1)) .

We define

A(n)=
(
l(n)

)2
,

B(n)(ξ, η)=2l(n)
(
−n(n)y

(
x (n) − ξ

)
+ n(n)x

(
y(n) − η

))
,

C (n)(ξ, η)=
(
x (n) − ξ

)2 +
(
y(n) − η

)2
.

In the parameterization (10.63), the quantity 4A(n)C (n) − (B(n))2 is non-negative,

F (n) ≡ 4A(n)C (n)(ξ, η) −
[
B(n)(ξ, η)

]2 ≥ 0 , ∀(ξ, η) .

Elementary integration [9] brings us to the final expressions for the line integrals
V (n) and D(n), which are distinguished according to the value of F (n). If F (n) > 0,
we evaluate

V(n) = l(n)

4π

{

2
(
log l(n) − 1

)
− B(n)

2A(n) log

∣∣∣∣∣
C (n)

A(n)

∣∣∣∣∣ +
[

1+ B(n)

2A(n)

]

log

∣∣∣∣∣1+
B(n)

A(n) +
C (n)

A(n)

∣∣∣∣∣

+
√
F (n)

A(n)

[

arctan
2A(n) + B(n)

√
F (n)

− arctan
B(n)

√
F (n)

]}

,

D(n) = l(n)
[
n(n)x

(
x (n)−ξ

)
+ n(n)y

(
y(n)−η

)]

π
√
F (n)

[

arctan
2A(n)+B(n)

√
F (n)

− arctan
B(n)

√
F (n)

]

,

On the other hand, if F (n) = 0, we need to compute

V (n)= l(n)

2π

{
log l(n) +

[
1+ B(n)

2A(n)

]
log

∣∣∣∣1+
B(n)

2A(n)

∣∣∣∣ − B(n)

2A(n)
log

∣∣∣∣
B(n)

2A(n)

∣∣∣∣ − 1
}

,

D(n)=0 .

The boundary element method is also applicable to non-stationary problems: time
integration is performed separately. A superb introduction is given in [9].

10.6 Finite Element Method !

Finite element methods (FEM) are five decades old, yet they remain the basic tool of
engineers and natural scientists, especially for problems in elastomechanics, hydro-
and aero-dynamics in complex geometries. In difference methods we use finite dif-

simon.sirca@fmf.uni-lj.si



Chapter 12
Inverse and Ill-Posed Problems !

When we evaluate the expression f = Au, where u and f are vectors and A is a
matrix, we solve a direct or forward problem. Given A we can precisely calculate
f for any u. The only danger we may anticipate in a computer is the one of over-
or underflow, or perhaps loss of precision. Solving a backward or inverse problem
is a step in the opposite direction: we either wish to reconstruct u from f , knowing
A — this is the so-called inverse reconstruction problem — or learn something
about A from given u and f , which is known as the inverse identification problem
becausewe are identifying the parameters of the underlying “model”— the presumed
linear mapping embodied by the matrix A. In either case trouble is brewing: A may
not be invertible, and even if it were, it may be ill-conditioned. The difficulties
could be compounded by the data f being noisy, or A depending on u, introducing
nonlinearity.

One could say that everything we ever do in physics research— identifying inputs
to the system based on its outputs or assessing models — amounts to solving inverse
problems in the above sense [1–4].Most often such problems are ill-posed.Aproblem
is considered to be well-posed if its solution exists, if this solution is unique, and if
the solution depends smoothly on the data. If any of these three qualifiers is absent,
the problem is said to be ill-posed.

Example Consider the linear equation Au = f with

A =
(
1 0
0 10−3

)
, f =

(
1

10−3

)
,

whose unique solution is u = A−1 f = (1, 1)T. Let us modify the second element
of f by δ = 10−3, such that f δ = f + (0, δ)T = (1, 2·10−3)T. The solution uδ of
the perturbed problem, Auδ = f δ , is uδ = (1, 2)T, a large change in the result!
Indeed, the ratio of the norm of the solution difference, u − uδ , to the norm of the
perturbation, f − f δ , is

© Springer International Publishing AG, part of Springer Nature 2018
S. Širca and M. Horvat, Computational Methods in Physics,
Graduate Texts in Physics, https://doi.org/10.1007/978-3-319-78619-3_12

691

simon.sirca@fmf.uni-lj.si



692 12 Inverse and Ill-Posed Problems !

r = ‖u − uδ‖2
‖ f − f δ‖2

= 1000 .

Now suppose we change the matrix A by introducing a parameter α as

Aα =
(
1 0
0 (1 − α)−310−3

)
,

and choose α = 0.2. By keeping the same perturbation as before, the solution
of Aαuδ = f δ becomes uδ = (1, 1.024)T, with the error ratio of just r = 24. By
guesswork we quickly find that taking α = 0.2063 yields uδ ≈ (1, 0.999998)T and
r ≈ 0.002! In this obviously ill-posed problem, a particular choice of the functional
form of the correction and a magical value of its parameter α dramatically reduce
the reconstruction error. $
Example Figure12.1 (left) shows a discrete square-wave signal u sampled at N =
100 points spaced h = 1/N apart, its smoothly smeared version Au by using the
matrix A with the elements

Ai j =
h√
2πγ

exp

[

−
(
(i − j)h

)2

2γ2

]

, i, j = 1, 2, . . . , 100 , (12.1)

where γ = 0.03, as well as the signal f δ = Au + δ contaminated by seemingly
harmless normally distributed noise, δi ∼ 0.2N (0,σ2) with σ = 0.2.

The right panel shows a naive reconstruction of u by calculating A−1 f δ . Since
A is ill-conditioned, the attempt fails miserably. The problem obviously needs to be
modified in some way in order to deliver a stable solution. $

si
gn

al

0 02 04 06 08 001

1

0 8

0 6

0 4

0 2

0

si
gn

al

0 02 04 06 08 001

1

0 8

0 6

0 4

0 2

0

Fig. 12.1 [Left] The signal u, its smeared version Au and the final signal with added Gaussian
noise. [Right] The naive reconstruction of u by solving the equation Au = f δ for u. The recovered
solution is utterly useless: in the figure it has been multiplied by 10−16 (!) to fit into the scale of the
plot

simon.sirca@fmf.uni-lj.si



12.3 Regularization of Linear Inverse Problems 701

12.3.1 Truncated Singular Value Decomposition

The simplest way to suppress small singular values is to truncate the expan-
sion (12.12), i.e. discard all 1/σ that fall below the threshold specified by α,

gα(σ) =
{
1/σ ; σ ≥ α ,

0 ; σ < α .

Thus the truncated SVD (TSVD) solution is given by

uα = "α f =
∑

σi≥α

1
σi

〈 f, vi 〉Q ui . (12.14)

If the data error can be bounded as ‖ f − f δ‖Q ≤ δ, the TSVD results in the error
estimate ‖Auα − Auδ

α‖Q ≤ δ and, more importantly,

∥∥uα − uδ
α

∥∥
P ≤ δ/α .

This inequality tells us that higher noise implies that more and more singular values
need to be suppressed if the solution error is to be kept below a desired value. More-
over, the choice of α is not arbitrary as it may not lead to a convergent regularization:
in particular, α may be assumed to depend on δ alone, on f δ alone, or on both δ
and f δ . The methods in which the optimal α can be determined will be discussed in
Sect. 12.3.7.

12.3.2 Tikhonov Regularization

Classic Tikhonov regularization uses the function

gα(σ) =
σ

σ2 + α
, (12.15)

which generates the regularized inverse

uα = "α f =
∞∑

i=1

σi

σ2
i + α

〈 f, vi 〉Q ui . (12.16)

Assuming that α depends only on δ and that limδ→0 δ/(2
√

α(δ)) = 0, the Tikhonov
regularization brings about the error estimate

∥∥uα − uδ
α

∥∥
P ≤ δ

/(
2
√

α(δ)
)
. (12.17)

simon.sirca@fmf.uni-lj.si



702 12 Inverse and Ill-Posed Problems !

Fig. 12.4 [Top left] The norm of the reconstructed solution error and [Top right, bottom]
the regularized solutions (12.18) for three values of α

Example Let us revisit the Example of Fig. 12.1 and try to regularize the ill-
conditioned inverse by using the Tikhonov technique. We are dealing with an alge-
braic problem Au = f δ with thematrix A ∈ Rn×n = P = Qgiven by (12.1), u ∈ Rn

and f δ ∈ Rn , n = 100. The singular value decomposition of A,

A = Q#PT ,

yields the singular values σi (diagonal of #) and the singular vectors ui ∈ Rn

(columns of P) and vi ∈ Rn (columns of Q), so the regularized inverse (12.16)
applied to the noisy data f δ becomes

uδ
α = "α f δ =

n∑

i=1

σi

σ2
i + α

(
f δ · vi

)
ui . (12.18)

Figure12.4 shows the regularized solutions uδ
α (top right and bottom panels) for

three choices of α. For illustration we can assume that we know the exact solution u
and take the normof the error ‖uδ

α − u‖2 as ameasure of the quality of the regularized
inverse. It is shown in Fig. 12.4 (top left). The optimal α ≈ 0.03 corresponds to the
minimumof the error.We shall have another look at how to stabilize thedeconvolution
in Sect. 12.3.6. $

simon.sirca@fmf.uni-lj.si



728 12 Inverse and Ill-Posed Problems !

in discrete form; as three-fold integrals or sums are involved, the numerical cost of a
naive implementation is O(N 3), where N is the typical size of the discretization in
any variable (usually they are all comparable). See Problem 12.7.4. For information
on fast versions of the Radon transformation and its inverse (typicallyO(N 2 log N ))
consult [45] and references therein.

12.5 Inverse Sturm–Liouville Problems

Let us motivate this section by the paper [46] in which Mark Kac asked whether
one can “hear the shape of a drum”. In other words, can we uniquely determine the
shape of the drum membrane if we measure its eigenfrequencies? To play a drum
means to solve the wave equation utt = ∇2u on the domain (drum) $ by the ansatz
u(x, y, t) = φ(x, y)T (t), whence Ttt/T = ∇2φ/φ = const = λ. The displacement
of the membrane from equilibrium is u(x, t) = φ(x, y) sin

√
λt , where φ(x, y) is the

solution of the two-dimensional eigenvalue problem

−∇2φ = λφ on membrane $ ,

φ = 0 on membrane boundary ∂$ ,

and where the eigenvalues λi are the squares of the drum’s eigenfrequencies. The
inverse problem consists of askingwhether the geometry of the domain$ is uniquely
determined by the discrete set of eigenvalues (the spectrum). The non-trivial answer
is: it is not. One can show that the observed eigenvalues do determine some properties
of $, like its surface area, circumference, and connectivity [46], but geometrically
different domains can be found with precisely the same spectrum, including possible
degeneracies [47, 48]. We call such domains (and inverse problems) isospectral.
Figure12.12 shows the example of two membranes with identical spectra.

Similarly, one could introduce a coefficient function c(x, y) in the wave equa-
tion to represent the position-dependent speed of sound, and try to infer the func-
tional form of c from the measured spectrum. Problems of this kind are the
topic of this section. To keep the presentation within the scope of this book, the

Ω

∂Ω

Fig. 12.12 Two geometrically different drum membranes (isospectral domains) with identical
discrete sets of eigenfrequencies

simon.sirca@fmf.uni-lj.si



12.5 Inverse Sturm–Liouville Problems 729

discussion will be restricted to one-dimensional isospectral problems involving reg-
ular Sturm–Liouville operators on a finite interval.

12.5.1 Information Needed to Recover q(x)

The classical inverse Sturm–Liouville problem consists of reconstructing the poten-
tial function q(x) from the solution of the direct problem

−y′′(x)+ q(x)y(x) = λy(x) , 0 < x < 1 ,
y′(0) − hy(0) = 0 ,
y′(1)+ Hy(1) = 0 ,




 (12.53)

by knowing something about its eigenvalues λn , the properties of its eigenfunctions
yn = y(x,λn), or the symmetries of q. Note that the above boundary conditions
translate to α1 = h, α2 = 1 (or h = α1/α2) and β1 = H , β2 = 1 (or H = β1/β2)
with B = 1 in the notation of (8.86) and (8.87).

Even if one knows the complete spectrum {λn}∞n=0 of (12.53), this is insufficient to
recover q; some additional information must be provided. For instance, if one knows
in advance that q is symmetric about the midpoint of the interval, q(x) = q(1 − x),
and that h = H , q can be recovered uniquely from the spectrum [49]. Similarly, if the
values of q are given over at least a half of the interval, knowing the spectrum allows
for a unique determination of the remaining portion of q [50]. The third option for
the recovery of q is that we know the spectrum as well as the eigenfunction norms,
usually defined by

ρn = ‖yn‖2
/
y2n (0) (finite h) or ρn = ‖yn‖2

/
y′2
n (0) (h = ∞) ,

where ‖ · ‖ = ‖ · ‖L2(0,1). The sets {λn}∞n=0 and {ρn}∞n=0 constitute the so-called spec-
tral data of the Sturm–Liouville problem. Yet another possibility to uniquely recon-
struct q is to specify two spectra of related Sturm–Liouville problems differing only
in their boundary conditions, for instance, the spectrum {λn}∞n=0 from (12.53) and
the spectrum {µn}∞n=0 from the same problem but with the constant H replaced by
H ′ 1= H [51].

12.5.2 The Gelfand–Levitan Method

Gelfand and Levitan [52] have shown that the Sturm–Liouville problem forwhich the
spectral data {λn}∞n=0 and {ρn}∞n=0 are known can be inverted analytically, recovering
q as well as the boundary-value parameters h and H . Here we sketch the main
steps of the method [53] for the direct problem in the form (12.53). Other types
of boundary conditions are treated similarly; see, for instance, [54] or Chap.4 of

simon.sirca@fmf.uni-lj.si

0



12.5 Inverse Sturm–Liouville Problems 735

at each step of the iteration. Recall that we are trying to recover a symmetric q, hence
we must set H = h also in the target boundary condition at x = 1. The iterative
algorithm, then, is

Input: subset of spectrum {λn}Nn=1
set B[y] = y′(1)+ Hy(1) // H = h for symmetric q
set q(0)(x) // can be zero
for i = 1 step 1 to imax do

for n = 1 step 1 to N do
solve initial-value problem (12.61) for yn
bn = B[yn]
for k = 1 step 1 to B do

solve initial-value problem (12.62) for ŷnk
Ank = B[̂ynk]

end
end
solve Ankck = −bn
!q(x) = ∑B

k=1 ckφk(x)
q(i)(x) = q(i−1)(x)+ !q(x)

end
Output: reconstructed approximate q(x)

Note that no additional information on q is needed except the fact that it is sym-
metric about x = 1/2. In particular, we do not have to provide the average potential∫ 1
0 q(t) dt that some methods require on input.

Example (Adapted from [62].) Consider a Sturm–Liouville problem with homoge-
neous Dirichlet boundary conditions at both x = 0 (h = ∞, hence yn(0) = 0 and
y′(0) = 1) and x = 1 (H = ∞, thus B[y] = y[1]) with the symmetric potential

q(x) = 1 − exp
(
−20(x − 0.5)2

)

shown by the thin full curve in Fig. 12.13 (left). The first three (N = 3) eigenvalues,
computed by the SLEIGN2 code [64], are

{λn}3n=1 =
{
10.2302265, 40.1367683, 89.4264374

}
.

The accuracy of this calculation is crucial! Let us take three (B = 3) basis functions
for the expansion of the updates !q(i), namely

{φk(x)}Bk=1 =
{
1, cos(2kπx), cos(4kπx)

}
.

One is free to use other types of basis functions, for instance, linear or cubic splines,
but in general they should be matched to the anticipated symmetry properties of q.

The reconstructed potential after a single iteration (imax = 1) and after two iter-
ations (imax = 2) is shown by the dashed and thick full curve in Fig. 12.13 (left),

simon.sirca@fmf.uni-lj.si



736 12 Inverse and Ill-Posed Problems "

Fig. 12.13 Recovering a symmetric potential q(x) of a Sturm–Liouville problem on [0, 1] with
homogeneous Dirichlet boundary conditions from its partial spectrum. [Left] Reconstruction from
the lowest three eigenvalues by using an expansion in terms of three basis functions. [Right] Error
of the reconstruction after two iterations with N = B = 3 and N = B = 5

respectively. Figure12.13 (right) shows the corresponding absolute errors. The algo-
rithm converges very quickly, and increasing imax does not eliminate the residual
disagreement observed near the edges of the domain.

Choosing N = B = 3 and N = B = 5 in the above example makes the matrix
A square, letting us exploit as much information as possible and keep A well con-
ditioned. In practice, the size of the spectrum is usually beyond our control: we are
forced to live with whatever low N we have available. If, however, we happen to
have a larger set of N presumably noisy eigenvalues and opt for a relatively short
expansion basis, B < N , the problem can still be solved in the least-squares sense:
just prior to solving the system Ankck = −bn , perform the singular value decompo-
sition A = U#V T, filter or zero out small singular values σi contained in #, and
recombine to obtain the whittled-down A. This is instrumental not only in solving a
non-square system, but primarily in weeding out the components causing inversion
instabilities. $
Other types of inverse Sturm–Liouville problems For the solution of inverse
Sturm–Liouville problems in the so-called impedance form

−
(
a(x)y′(x)

)′ = λa(x)y(x) ,

where the task is to recover a(x) from spectral data, see [65, 66]. Inverse Sturm–
Liouville problems inwhich the eigenvalues are contained in the boundary conditions
are discussed in [67].

simon.sirca@fmf.uni-lj.si



12.6 Inverse Problems for Partial Differential Equations 743

q1,0

∫ t

0
q2(τ ) dτ +

√
2

∞∑

n=1

q1,n cos (nπx0)
∫ t

0
q2(τ ) e−n2π2(t−τ ) dτ = f (t) .

Assuming continuity of q1 and q2 we may change the order of summation and
integration, which leads to a Volterra equation of the first kind for q2,

∫ t

0
K (t, τ )q2(τ ) dτ = f (t) , t ∈ [0, T ] ,

with the kernel

K (t, τ ) = q1,0 +
√
2

∞∑

n=1

q1,n e−n2π2(t−τ ) cos (nπx0) .

If q1(x0) = 0 the solution of the inverse problem (12.72) is not necessarily unique.
This can be seen by choosing x0 = 1/2 and letting q1 be odd with respect to
x0, that is, q1(x) = −q1(x0 − x). The solution q2(t) is unique if q1 satisfies q1 ∈
C4[0, 1], q1(x0) '= 0 and q ′

1(+0) = q ′
1(1 − 0) = 0, and if f satisfies f ∈ C4[0, T ]

and f (+0) = 0 [31].

12.6.3 Inverse Source Problems for the Wave Equation

Consider the wave equation describing the transverse displacements along a unit-
length string attached at both ends, with given initial conditions for the displacement
and velocity,

utt = c2(x)uxx + q1(x)q2(t) , x ∈ (0, 1) , t ∈ (0, T ) ,
u(x, 0) = f (x) , ut (x, 0) = g(x) , x ∈ (0, 1) ,

u(0, t) = u(1, t) = 0 , t ∈ (0, T ) ,

Assuming that c(x) and the temporal dependence of the source term, q2(t), are
known, one might think that providing additional information on the displacement
at some later time t = T , e.g.

uT (x) = u(x, T ) , x ∈ (0, 1) , (12.74)

would allow us to recover the spatial load q1(x), just as we have done in Sect. 12.6.2
for the heat equation. However, it can be shown that the final-state over-determination
in the form (12.74) allows for a unique reconstruction of q1(x) only if T is not a
rational number, which is impossible to ensure in practice. The analogous kind of
over-determination inwhich the velocity distribution vT (x) = ut (x, T ) is known, has

simon.sirca@fmf.uni-lj.si



744 12 Inverse and Ill-Posed Problems "

the same insurmountable condition: see p. 95 of [12] for details. In the following, we
shall restrict the discussion to the cases where final over-determination is not needed.

Determining the purely temporal part of the source Consider the initial-value
problem

utt = uxx + ρ(x, t)q(t) , x, t > 0 ,
u(x, 0) = ut (x, 0) = 0 , x > 0 ,

ux (0, t) = 0 , t > 0 ,




 (12.75)

with the missing boundary condition provided by the trace of the function u(x, t)
measured at x = 0,

u(0, t) = f (t) , t ≥ 0 . (12.76)

This is the data of the inverse problem that must fulfill the consistency condition
f (0) = f ′(0) = 0. Assuming that ρ(x, t) is known and that ρ(0, t) '= 0 for all t ∈
[0, T ], it is then easy to showby extending the problem to negative x that q(t) satisfies
a Volterra equation of the second kind,

q(t)+
∫ t

0
K (t − τ , τ )q(τ ) dτ = F(t) , t ∈ [0, T ] , (12.77)

where

K (x, ·) = ρx (x, ·)
ρ(0, t)

, F(t) = f ′′(t)
ρ(0, t)

.

This integral equation is best solved by iteration

q(n)(t) = F(t) −
∫ t

0
K (t − τ , τ ) q(n−1)(τ ) dτ , n = 1, 2, . . . ,

with the initial guess q(0)(t) = F(t), or by any other method discussed in Sect. 12.4.
Note that even though this integral equation has a unique solution and converges
rapidly, there is no way to overcome the burden of (numerically) evaluating the
second derivative of the data function f . Do not despair: refer to Appendix F.

Example Let us demonstrate the reconstruction of the purely temporal part of the
source in the wave equation (12.75) by choosing

ρ(x, t) = 1+ x2t , q(t) = sin t .

Our task is first to solve the direct (initial-value) problemwith the known q(t), sample
the resulting u(x, t) at x = 0 to obtain the function u(0, t) = f (t), construct F(t)
by taking the numerical second derivative of f (t) and, finally, handle the inverse
problem by solving (12.77) for q, ending up with the reconstructed qrec(t).

The solution u(x, t) of the direct problem calculated on the domain (x, t) ∈
[0, T ] × [0, T ] with T = 20 is shown in Fig. 12.16 (top left). This calculation must

simon.sirca@fmf.uni-lj.si

O



12.6 Inverse Problems for Partial Differential Equations 745

Fig. 12.16 Recovering the purely temporal part of the source term in the wave equation. [Top
left] The solution u(x, t) on the domain (x, t) ∈ [0, 20] × [0, 20]. [Top right] The normalized
second derivative of f (t). [Bottom left] The reconstructed temporal part of the source. [Bottom
right] The error of the reconstruction

be as precise as possible in order to achieve sufficient smoothness of F(t). The solu-
tion in the figure has been calculated by the NDSolve routine of Mathematica
to a precision of six digits and interpolated, so that the second derivative of f was
performed on the interpolant. The resulting F(t) is shown by the smooth curve in
Fig. 12.16 (top right).

The integral equation (12.77) for q is then solved by iteration with the initial guess
q(0) = F(t). The reconstructed potential after 10, 20, 50 and 100 iterations is shown
in Fig. 12.16 (bottom left). The corresponding errors with respect to the exact source
are shown in the bottom right panel.

Homework: perturb F(t) in some manner — obtaining something like the
thin noisy trace in Fig. 12.16 (top right) — and repeat the exercise. Study the sen-
sitivity of the reconstruction to the level of noise introduced at other stages of the
procedure. $
Determining the purely spatial part of the source The treatment of the inverse
problem in which the purely spatial component of the source needs to be recovered,
i.e. the inverse of the initial-value problem

utt = uxx + ρ(x, t)q(x) , x, t > 0 ,
u(x, 0) = ut (x, 0) = 0 , x > 0 ,

ux (0, t) = 0 , t > 0 ,

simon.sirca@fmf.uni-lj.si



798 Appendix C: Generation of Pseudorandom Numbers

If (U, V ) is a random variable uniformly distributed over Cp, we have X = V/U
[14]. This transformation is embodied in the algorithm

Input: Distribution p, constants a = supx
√
p(x), b = inf x x

√
p(x), and

c = supx x
√
p(x).

repeat
Independently draw u and v from U (0, 1).
u1 = au;
u2 = b + (c − b)v;
x = v/u;

until ( u2 ≤ p(x) )
Output: x is the value of one realization of the random variable distributed

according to p.

This algorithm is a variation of the rejection method, and can be optimized sim-
ilarly. An example of optimized generation of random numbers from N (0, 1) is
described in [15]: the region Cp where the points are accepted is shown in Fig. C.3
(right). This method requires ≈2.74 draws from U (0, 1) to generate one number
from N (0, 1) [4], which is worse than in the Box-Muller method.

C.3 Random Number Generators and Tests of Their
Reliability

Generators of random numbers xi ∈ Zm = [0,m − 1]where i ∈ N0 = {0, 1, . . .} [3,
4] are defined by the transition function F and the relation

xi = F(xi−1, . . . , xi−k) mod m .

The function F is thus restricted to Zm by the congruence relation [2]. The initial
state {x0, x1, . . . , xk−1} of the generator is a unique function of a number known as
the seed which completely determines the generated sequence: a generator initialized
with the same seed always yields the same sequence of numbers. The properties of
F define two classes of generators. If F is linear in its parameters, the generator is
linear ; in other cases, it is non-linear.

Random number generators are implemented in all major numerical packages
(Matlab, Mathematica, Maple, the R project) and in libraries (Numerical
Recipes, GSL, Boost). Interesting thoughts on the implementations of generators
are preserved in [16] and in appendices A–C of [17]. A pedagogically systematic
overview of random generator classes is offered by [2, 6].

C.3.1 Linear Generators

Typical linear generators are the linear congruential generators (LCG):

simon.sirca@fmf.uni-lj.si



Appendix C: Generation of Pseudorandom Numbers 799

Fig. C.4 [Left] Zoom-in of the phase space [0, 1]3 of the points 2−31(xi , xi+1, xi+2) picked from
the sequence {xi } generated by the standard 32-bit glibc generator with x0 = 12345. [Right]
The bits b of numbers xi (black = 1, white = 0)

xn+1 = axn + c mod m ,

where xn ∈ Zm . The result {x0, x1, . . .} is called the Lehmer sequence. Themultiplier
a and the carry c ∈ Zm are adjustable constants, while the initial value x0 is the seed.
A LCG generator for c &= 0 attains full periods of length m precisely when c and m
have no common factors except 1, when (a − 1) is divisible by all prime factors m,
and when (a − 1) is a multiple of 4, if m is a multiple of 4 [3]. In the case c = 0 we
attain the longest period of length m − 1 if m is prime. On the average, the period of
the LCG-type generator is increased by using a non-zero c.

If c = 0, the points (1/m){xi , . . . , xi+k−1} for given k and x0 do not fill the whole
k-dimensional hypercube but lie on atmost (mk!)1/k hyperplanes (similarly for c &= 0
[18]). A good generator should generate numbers over many hyperplanes [19]. It also
turns out that the least significant bits are less random than the more significant ones
[4, 20]: Fig. C.4 shows the numbers generated by the default generator in the 32-
bit glibc library. It belongs to the LCG family with the parameters m = 232, a =
1103515245, and c = 123454. The figure clearly shows that the points are distributed
in planes and that the less significant bits are not random.

The LCG generators are therefore not suitable for certain applications. In those
cases where the deficiencies discussed above are irrelevant, we nevertheless use them
extensively, since they are supported by all programming languages and because they
are simple and fast.

Further members of the LCG family are the generators Add-with-Carry (AWC),
Subtract-with-Borrow (SWB), and Multiply-with-Carry (MWC) [21]:

simon.sirca@fmf.uni-lj.si


