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Al HAS A LONG HISTORY OF BEING “THE NEXT BIG THING” ...

Timeline of Al Development

Popularity * 19505-1960s: First Al boom - the

age of reasoning, prototype Al
developed

Explosive * 1970s: Al winter |

Growth * 19805-1990s: Second Al boom: the

age of Knowledge representation
(appearance of expert systems

t time

New Hq
I Hopes capable of reproducing human
! decision-making)
Inflated H = 1990s: Al winter Il
Hype : = 1997: Deep Blue beats Gary
T

{1 Alwinter il
i Kasparov

* 2006: University of Toronto
develops Deep Learning

= 2011: IBM's Watson won Jeopardy

* 2016: Go software based on Deep
Learning beats world's champions

- Machine Learning and Neural |.~ %
Networks (Historical T
Perspective)

Time

 Deep Learning - Partial Wave
Analysis

- Machine Learning - Detector
Optimization
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Machine Learning

Meaningful
Compression

Structure Image

) o Customer Retention
Discovery Classification

 Machine learning is a broad field with
heavy application in nuclear physics

Big data Dimensionality Feature Idenity Fraud

. B * Diagnostics
Visualistaion Reduction Elicitation Detection

 Deep learning has become a very
active field in the last decade now that "% Unsupervised Supervised
. Learning Learning Weather
we have computational resources and . e
software libraries that are easy to use i Machine Y=

Prediction

Advertising Popularity
Prediction

Clustering

Market
Forecasting

Customer

Segmentation L ea r n i ng

Estimating
life expectancy

ARTIFICIAL
INTELLIGENCE

Real-time decisions Game Al

MACHINE Reinforcement

LEARNING Learning
- o3 DEEP Robot Navigation Skill Acquisition

L Q.} LEARNING

Learning Tasks

1950s 1960's  1970s 1980's 1990s 2000's 2010
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Early History

- Artificial Neural Networks were
proposed in 1943

- Warren McCulloch a
neurophysiologist
- Walter Pitts, mathematician
- Donald Hebb furthered ANNs

- ‘Hebbian Learning’ — a model of
learning based on neural plasticity,
proposed by Donald Hebb in his
book “The Organization of
Behaviour” often summarized by
the phrase:“Cells that fire
together, wire together.”
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Cell body

Telodendria

Synaptic terminals

Axon hil%

-

| Golgi apparatus
Endoplasmic p
reticulum

Mitochondrion \

/ % Dendritic branches

« The human brain has
approximately 86 billion neurons

« ~]00 trillion connections
« ~300k mi of connections

- Axons can be very short or up to
a meter in length
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Early History

- Frank Rosenblatt created the first
machine called the Mark | Perceptron
in 1958

- It was based on the McCulloch-Pitts
neuron

* Warren McCulloch
+ Walter Pitts
- The Mark | Perceptron was connected

to a 20x20 pixel “camera” made of
cadmium sulfide photocells
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Inputs  Weights
I Wi
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]

In

Patch Panel for
input variations

Potentiometers

Mark | Perception - 1958
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Early History and Hype!

- Research continued into the 60’s and
was receiving much attention and
funding

Al HAS A LONG HISTORY OF BEING “THE NEXT BIG THING”...

Timeline of Al Development

+ Machines were only able to separate P " g oA
. developed
linearly separable data Explosive - 19705 A winter
. . ) Growth * 19805-1990s: Second Al boom: the
* In 1969,“Perceptrons” was published Neutopes rance of per spams

capable of reproducing human

by Marvin Minsky, founder of MIT Al ; decsion makig)

Inflated { = 1990s: Al winter Il
Lab and Seymour Papert the director s T Arimern ¥ 1087 D hm bl T

* 2006: University of Toronto
develops Deep Learning
* 2011: |BM’s Watson won Jeopardy

* 2016: Go software based on Deep
Learning beats world’s champions

of the Al Lab i éwi'm”
- Caused much doubt in MLPs and i L

1950 1956 1974 1980 1987 1993 Time

contributed to Al Winter

https://www.actuaries.digital/2018/09/05/history-of-ai-winters/
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Neuron and Activation Functions

Bias(Offset) Value

* Neural Networks are composed of "' |

individual Neurons Oa @ |
Bias(Offset) Weight
 Neurons have inputs and those inputs A bA/‘ Value

. Wi
have trainable parameters called Sk Y
~W2“aom—>

weights - /
- The weights are applied to the = . Pl z=b+ Zvla.w.
=1 1
respective inputs and summed together O Y a,, = g(z)

- After summing the inputs/weights and
bias the output is determined by the
activation function

Sigmoid Function

1

as 1+exp(-2)
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Activation Functions

Sigmoid 1 Leaky ReLU )

o(z) = iy max(0.1z, x)

tanh V Maxout

tanh(a:) 4 ‘° max(w{ = + by, wd x + by)

RelLU | / ELU b/l/
T x>0

max(O, ZL‘) = . {a(e“’ —-1) <0 - i T
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Multilayered perceptron MLP

* The arrangement of neurons
within a neural network is
called a network architecture

* In the 1980’s creating layers of gy

Input
perceptrons became a popular

network architecture
- It is still widely used today

- This architecture is powerful
but posed significant challenges
when it came to setting weights
and biases

* Future: Backpropagation/Gradient
Descent

Example MLP
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A mostly complete chart of

N eu ra_l N etWO rk 0w Neural Networks ...
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A mostly complete chart of

O Backfed Input Cell N e u ra l- N etWO rks Deep Feed Forward (DFF)

©2016 Fjodor van Veen - asimovinstitute.org

. ~ Input Cell "
~ \N
A Noisy Input Cell o - \,{‘\y,l\\
S erceptron (P) Feed Forward (FF)  Radial Basis Network (RBF) - s,‘,',bég,:,.g)
@ Hidden Cell - - i "i "v““o‘ ,:‘
© Probablistic Hidden Cell f - = - ‘

@ spiking Hidden Cell Recurrent Neural Network (RNN)  Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
o s R~ B

@ output cell - ... - 0 - B
 MLPs — General all around neural P % RN AT AT

network, what everyone thinks of Cp—

© wemorycet Auto Encoder (AE)  Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

When )’OU mention NNS @ oifferent Memory Cell

" Kernel

- Recurrent Neural Networks/LSTMs — O oo
Used for time series data

- Convolutional NNs — Good for images he e of QAA
or other data where the relative o oy 0 00 5 0 &
position of features is important

- Autoencoders — Unsupervised learning,
good for denoising

- Generative models — GANs, VAEs, etc. : 50 ‘
GOOd for genera’ti ng new data based Generative Adversarial Network (GAN) Liquid State Machine (LSM) l;xlremeLearnin;yl\lla;h;ne(ELM) EchoStalENEtwur;('ESN)
on prior knowledge . s

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BV (RBM) Deep Belief Network (DBN)

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

)

\><\><\><W><|

Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)

AL e soibs %



MLP Example — Hackathon

Read in 30x30 pixel hits from CSV files, provide calorimeter hit position (x, y)
and amplitude of the hit.

Model Architecture: MLP w/3 layers of 2000 neurons, relu activation function
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Autoencoder Example — Hackathon

Unsupervised Iearnlng'

Latent Space — Some representatlon of X,Y, E?

| I I | Output Calorimeter Hit

Calculate Loss — MSE of histograms

Input Calorimeter Hit

2000—1000—100—3 ...
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Backpropagation and Gradient Descent

- Up until 1986 backpropagation was not
used in neural networks

+ Without backpropagation you cannot
calculate the gradient for each weight

- Loss function defined to compare
prediction w/target output

l Target Output |
l Neural Network Model l :

Prediction

Training Data -

[ Compare y

Error
Signal

NN Weights
Modification Learning/Training

Algorithm

Training a Neural Network

Starting

f(x) A / Point

Iteration 3

Iteration 4

Convergence

Final
Value

Gradient Descent
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Tools of the Trade % TensorFlow

Keras

- Long gone are the days where you would write your own NN Library!!!

+ Today there are two main packages competing for dominance: PyTorch
(Facebook/Meta) and Tensorflow/Keras (Google)

+ Python 3.9 —Anaconda
- Keras/TensorFlow - NN Libraries

+ Pandas/Numpy - Data Handling

TITAN RTX

- Matplotlib - Visualization
« Many GPU nodes that Scientific Computing division has available

Either through Jupyterhub or interactively using slurm to request a node
Several machines with 4 NvidiaTitan RTX GPUs and some with 14 Nvidia T4 GPUs

test = pd.read_csv("TRAIN/TRAIN.csv") S le Training Scri
labels = pd.read_csv("TRAIN/TRAIN_labels.csv") ample lraining >cript
activation 'relu’

model = Sequential()

model.add(Dense(units=1000, activation-=activation, input_shape=(3600,
model.add(Dense(units=1000, activation-activation))

model.add(Dense(units-1000, activation-activation))

model.add(Dense(units=2))

model.compile(optimizer=adam(lr=.001), loss='mean_squared_error', metrics=['accuracy'l])

model. fit(test, labels[labels.columns([1:]1], epochs-300, batch_size-256, validation_split
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350 GB in fpl6 precision (!!!)

Computing Resources ..

§ 100
* First trained on GPU in 2009 2 e
- Models are getting larger and £ .6} ST e e
larger and require specialized  { o ™ - n 9
hardware to train S
1;;12 2613 2614 2515 2616 2617 2618 2619 2620

Year

Tesla D1 Dojo Chip Goosle TPU
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Partial Wave Analysis  APLUPWHA

A python-based software framework designed to perform
Partial Wave and Amplitude Analysis with the goal of Group Members
extracting resonance information from multi-particle final
states. Mark Jones (NSU)
William Phelps (CNUY/Jlab)
Michael Harris (NSU)
Andru Quiroga (CNU)

¢ In development since 2014 and has been significantly
improved with each revision.Version 3.4 out now.

- Efficient amplitude analysis framework including Bruna Goncalves (NSU)
multithreading and CUDA support Nathan Kolling (CNU)

+ Optimizers include: Minuit, Nestle (or add your own!)

+ NIM Paper in development! Former Group Members

Josh Pond
Stephanie Bramlett
Brandon DeMello

Website: https://pypwa.jlab.org

GitHub: https://github.com/JeffersonLab/PyPWA
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PWA using Neural Networks

- Generate datasets using decay

amplitudes (linear combination of

spherical harmonics) with the
following quantum numbers

- L=1,23
- m=0,l
. €R=-|,+|

- 9 total waves (“fit parameters”)

Generated Data

Phi [rad]

ZZ Y ewymiQ) avEL RV

€r 1l,|m|,l’,|m’|

m/’|

Ty@)

Production Amplitudes

1 2
Theta [rad]

Decay Amplitudes

Machine Learning: Hall A/C Joint Meeting - William Phelps

Phi [rad]

17

Generated Data

2
Theta [rad]

[saun "quy] Ausuaiul
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Early Results ‘¢ TensorFlow Keras p:‘:on \,,

TITAN RTX

* We compare the intensity
function and compare it to Input
the model prediction Histogram

+ Model Architecture:
+ 128x128 2D histogram as input

« 9x128 Dense Layers — Relu - .
Generated Data Model Prediction Prediction - Actual

activation ]
+ 9 production amplitudes as output

* In order to deal with the vast
amounts of data we used

generators to generate data
for each epoch on the fly coermetons ot peion

Output - Production
Amplitudes

1 2
Theta [rad]

0.2

0.1

[snun "quy] Ausuayul
°
>

[s3un "quv] Asuaiul v

B
I

Phi [rad]
o
w
°
B

o
o

[snun "qiv] Aysuayu
°
°

[suun "quv] Asusjul v

o
=

Useful Tools: Generators,

o
o

0 1 S = 0 1 3 0 1

Complex Valued Deep Learning hets e

2
Theta [rad]

2
Theta [rad]
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Unsupervised learning!

Autoencoder for PWA

Latent Space — Production Amplitudes

Calculate Loss — MSE of histograms

Input Histogram Output Histogram

o

o
-

S u

Phi [rad]

w
Phi [rad]

N

=

o

2
Theta [rad]

Theta [rad]
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Autoencoders for PyPWA

Latent Space — Production Amplitudes

\
I

Calculate Loss — MSE of histograms

* Encoder portion is a o g
standard MLP, but ’
without labels!

- Decoder is a PyPWA
model that takes in

Output Histogram

X2 1.8763

P rod u Cti O n am pI itu d es Generated Data Model Prediction os . Prediction - Actual )
and produces a o e
histogram : o B N

- Autoencoders B
dram atically i m P rove d 00.0 0.5 1.0 p o1 3 20 &5 3.0 0 0 0.5 1.0 iy 20 25 3.0 i 00.0 015 1.0 ¢ K] 2.0 25 330 h
the accuracy! T scion 107550 et

- Even works well for ’ . o B
noisy data i 3 A
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Mass Dependent Autoencoder work for PWA

Input Histegram Latent Space — Production Amplitudes Output Histogram

(20x) Histograms | (20x) Histograms

Latent Space p.2 — Resonance Mass and Width

2 3

Theta [rad]

Calculate Loss — MSE of 20 histograms
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The Mass-Dependent Generator

35000

30000 A

Intensity [Arb. Units]

10000

5000 -

Randomly Generated Event
(Currently One Resonance per Wave)

25000 A

20000 A

15000 A

[ ]
[ ]
[ ]
[ ]
L ] ® ) °
° ° °
o ©®
[ ]
[ ]
[ ]

[} ° o
T T T T T T
0.5 1.0 1.5 2.0 2.5 3.0

Mass [GeV]

Set of
Histograms
Binned in Mass

(3D-Histogram)
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X ® S
6000 - : *s o P
esults ‘ x ¢ o
5000 - « O ®
0 “e e Crosses — Generated
- With a CONV3D input 24000' ° é o .9 o Circles — Inference
to our autoencoder we 3 3000 ] . o ¢ 2
2 v
see a good agreement £ 0004 : 2 ¥ x %
. . g® o !
with the generated ool %48 x e,
. T © ] X 5 ®
data and inference ' . %3
i ® o 8 9 @
from our neural °1, . . . . .
0.5 1.0 1.5 2.0 2.5 3.0
networks Mass [GeV]

- Shown on the right are ~ — oo . —
three different tests el ite W .5 _ x4 .5
with randomly e : e e
generated g won ] ° " e ‘o *
data/resonances % 100 T Falxsdt, -

o UL T F A Bt RUORPE TR S
0-::".6“‘:. “"":i o-’,,, .'=§3III|--::

Mass [GeV] Mass [GeV]



Friday, June |7th, 2022

PWA Summary

* We have been able perform PWA “fits” with neural networks

+ Autoencoders dramatically improved the performance

Machine Learning: Hall A/C Joint Meeting - William Phelps 24

+ Future work includes uncertainty quantification, and we are currently

investigating Bayesian Neural Networks, dropout during inference, and
Variational Autoencoders

Many thanks to the EPSCI and Data Science group at JLab!

David Lawrence, Thomas Britton, Malachi Schram, Kishansingh Rajput
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Al-optimized design of the ECCE tracker

C. Fanelli, Z. Papandreou, K. Suresh et al (ECCE),
Al-assisted Optimization of the ECCE Tracking System at the Electron lon Collider
https://arxiv.org/pdf/2205.09185.pdf (submitted to NIM-A)

Detector technology being finalized: more
realistic material budget, simulation details

1 n.:;...-;njm .(e.g. background), and constraints to be
‘ Initialise Design Population ‘ vy (Thread_2) included
l ~| Design Point 2

Plan to encode all this in the existing

Al-assisted design framework

Evaluate Design Points  —
Parallelize Evaluations

Parallelizer / Scheduler
(2 Level Parallelization)

TTT {155 O 1 2
=
2

B I =1
S.
S
=
-

Opportunity to explore other optimization
strategies and scalability; more advanced
distributed pipelines/workflow

‘ Multi-objective Optimization ‘

/) DASK

Multiple objectives: different physics analysis

N

Non—-dominated Crowding In few months we will make a decision on the
sorting distenos 5 . SW framework (solution adopted by ECCE so
r, [ l far VS ATHENA one). With Regina | am
F, [ - planning to explore both coupling to Fun4All
F . é r @  Expected Pareto (DTLZ1) 1 and to DD4Hep
s . E>‘ 3 1 _ 0.4 ff‘: ®  NSGAIl Pareto (DTLZ1) ]
r u“L —&— NSGA-Il time (DTLZ1) ]
Qt - 0.2 :— °So Oj\o = 0/4/0(/3 04| —@— NSGA-Il time (tracker) —:
|:l —<Rejected N —— 3
—/ 2 3 4
Ry 10 Populatiolr(l) Size 10


https://arxiv.org/pdf/2205.09185.pdf
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Al-optimized design of the ECCE tracker
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AI4EIC EIC Detector 1 EIC Canada arXiv:2205.09185 C. Fanelli, Z. Papandreou, K. Suresh et. al

Multi Objective Bayesian Optimization

® Batch Number @ Pareto Fron

Select the Method of Optimization

t from surrogate

Performance of the Chosen Design Solution

MOBO

GEANT4 Visualization of the design

Parar

Design Parameters Table

meter Name

C. Fanelli, Z. Papandreou, K. Suresh

Navigate the Pareto front solutions
(different detector design points)
interactively

eter

Angle of cone [deg] 26.85

Radius of uRwell-1 [cms] 33.52

2 E-TTL [cms] 167.68

2 F-TTL [ems] 176.45

2 EST-1 [ems] 42,97

2 EST-3 [ems] 82.27

2 FST-1 [cms] 4152

2 FST-3 [cms] 89.90

2 FST-5 [cms] 142,01

= Momentum res ® Thetares ® Phires = KF InEff
Finer Evaluation of Momentum resolution for Selected Design
Y “aiv
256 l1]-'::|:"-!|p-inn Nor - 25 —e— 1-::':’:!.:-‘.; Non-Proj -
———— Selected Geometry Proj ——&—— Selected Geometry Proj
20 o Non-Proj Optim (Underway) = 20 E Non-Proj Optim (Underway) =
S 155 - S= 155 -
- —o— —e—
. Pl —.— i —,— ==
10 "n«***’* —— 10 ':2:31** ——
50 e g 50 g
. . . . .
10 15 20 S5 10 15 20
Track p [GeV/c] Track p [GeV/c]

https://ai4eicdetopt.pythonanywhere.com

(credits K. Suresh)

https://eic.ai


https://ai4eicdetopt.pythonanywhere.com/
https://eic.ai/
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Flux+Mutability

OCC - GlueX
AD - LHC Dijet

Agnostic cuts (fully
unsupervised)

Flux+Mutability
https://arxiv.org/pdf/2204.08609.pdf (submitted to IOP MLST)

“Flux+Mutability”:
A Conditional Generative Approach to One-Class
Classification and Anomaly Detection

Lends itself to data
monitoring

C. Fanelli'**, J. Giroux**, Z. Papandreou®*

! Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2 The NSF Al Institute for Artificial Intelligence and Fundamental Interactions,

Massachusetts 02139, USA, _y

QCD Dijet Outlier Score VS Leading Jet pr

0.08

Abstract.

3 Mriver : . Inference Object |
4 University of Regina, Regina, SK $4S 0A2, Canada " | I g 0.06
E-mail: *cfanelli@mit.edu, *jng887Quregina.ca, fzisis@uregina.ca A | ATTATIATTA 3 005 2
| “gssTouzeginaca : WD Wdakd L WA . o
' 20 April 2022 - Fostures xe 7 || Kinematics K < | g oot Lo vectors G | = 5 o &
EEE ) k] o [R] : S 002
|
|

0.0
450 500 550 600 650 700 750 800

L = pr, [GeV]
e EETT || BSM Dijet Outlier Score VS Leading Jet pr

Anomaly Detection is becoming increasingly popular within the experimental <
physics community. At experiments such as the Large Hadron Collider, anomaly cAE{
detection is at the forefront of finding new physics beyond the Standard -
Model. This paper details the implementation of a novel Machine Learning I

|
|
|
architecture, called Flux+Mutability, which combines cutting-edge conditional 1 | o.007
generative models with clustering algorithms. In the ‘flux’ stage we learn the Reconstructed Features X' - Residuals R, & & | \‘;L 5 0.006
distribution of a reference class. The ‘mutability’ stage at infe add if e e ] ninin | ‘ : ! g 0.005
data significantly deviates from the reference class. We demonstrate the validity W"“ f;"‘/ | [cmman.mmmn Vectors Z € & t‘;)OJ o4 voos 2
of our approach and its c to Itiple problems spanning from one- | 5 2
class classification to anomaly detection. In particular, we apply our method to | é o4 il |
the isolation of neutral showers in an electromagnetic calorimeter and show its : - o .. 0002
performance in detecting anomalous dijets events from standard QCD background. | ‘ CcMAF ) 0.001
This approach limits assumptions on the reference sample and remains agnostic to (© povard Rasa I~ o
the complementary class of objects of a gwen problem. We describe the possibility ‘Augmented’ Object Lpsoimrcbrrpoter 150 %00 50, 00 80 700 750 800
of dynamically generating a refe population and defining selection criteria via Outlier Score e R L pr, [GeV]
quantile cuts. Remarkably this flexible architecture can be deployed for a wide Rtrce Gl ; Leoond Quantils o N
range of problems, and apphcahon.s like multi-class classification or data quality HraEada 'L’;u':z::f:’ éfé B 1o (68%) 68.18 £ 0.22 % | 93.20 £ 0.06%
contral are left for further explaration. 20 (95%) | 95.15 £ 0.10 % | 42.40 £ 0.22%
30 (99%) 99.03 + 0.05 % | 11.82 + 0.14%
Fiducial cuts (99%) | 98.92 + 0.05 % | 2.35 + 0.06%

Ours Fraser et al. | Cheng et al. ]
AUC | 0.885 +0.003 0.87 0.89 l
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Summary

 There are many ML/AI projects going on at the lab but | was only able to
mention a few
« Al Townhalls have been held in 2020 and 2021 and are a great way to see what the
community is doing

- If you are interested in participating keep an eye out for [lab/EIC hackathons and
workshops (https://eic.ai)

* Workshop in October 2022!

Al FOR THE ELECTRON ION COLLIDER - EVENTS

AI4EIC - October 10-14, 2022

2nd General Workshop on Artificial Intelligence for the Electron lon Collider
Venue: William and Mary

Contacts:



https://eic.ai/
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What is a Hackathon?

It can mean many things but, in
this context, it is a competition
and a learning experience with
relevant problems usually
generated w/toy models

Specifically, we will talk about the
Al hackathon that took place on
July 27t after the Al Town Hall

+ But you will see a few photos of the
hackathon in 2020!

Typically, there are teams with
~4-5 people
* Not everyone has to be experienced

Held over the course of one day
with NP based problems/datasets

6}“" N

e 9

Hackathon in March 2020 — AI4NP
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Hackathons

* Foster community engagement
- Great learning experience

— \;//////1 ,

- And most of all, fun!

Oxpecker Reborn Team Roster

Gagik Gavalian (JLab)

Tyler Viducic (ODU)
Andru Quiroga (CNU)
Torri Jeske (JLab)

William Phelps (CNUY/JLab)

Al Townhall Hackathon - |ul
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Backup
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BECAL PID Study PRl

+ Higher pion rejection compared to
conventional methods when considering
high electron efficiency (~95%) 10

® € os9 traditional

* Work is in progress (started on f Eosx Mitrained
thanksgiving)

103 F
« |nterface with ECCE software: reco-track, &
track projection, 7x7 calorimeter towers
near track (track-based clustering by Al) _
[Link to details] « * e ®

+ Many models tried: MLPs, CNNs, Multi-Input 10t \
models, Autoencoders, GANE. ;

tion
([ ]

102 ® ~\°

- rejec

- Ongoing hyperparameter tuning on 14 GPU . |
going nyperp & 100 1 2 3 4 5 6780910 20 30 40
nOdeS Ptrack(GeV/c)

// CHRISTOPHER NEWPORT f ?on Lab

UNIVERSITY omas Jefferson National Accelerator Facility



https://ecce-eic.github.io/doxygen/da/d09/classeIDMLInterface.html
https://nbviewer.org/github/ECCE-EIC/analysis/blob/master/eIDML/macro/Plot.ipynb
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BECAL PID StUd)' A. Quiroga,W. Phelps,

C. Fanelli,and J. Huang

+ Higher pion rejection compared to conventional methods
when considering high electron efficiency (~95%)

* Work is in progress (started on thanksgiving)

+ Interface with ECCE software: reco-track, track ® o5y traditional
projection, 7x7 calorimeter towers near track (track- ¢ o Mitrained
based clustering by Al) [Link to details] 109}

. i * |

+ Many models tried: MLPs, CNNs, Multi-Input : ¢ |
models, Autoencoders, GANs. g o ,° Fle o

- Ongoing hyperparameter tuning on 14 GPU nodes . | R .

x " x x *
E 3
101 E— { . €
100 Zi. 2 3 4 5 678 91.0 20 30 40

Prrack(GeV/c)

// CHRISTOPHER NEWPORT
UNIVERSITY

Z
S 3
< e

Features



https://ecce-eic.github.io/doxygen/da/d09/classeIDMLInterface.html
https://nbviewer.org/github/ECCE-EIC/analysis/blob/master/eIDML/macro/Plot.ipynb
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Ongoing Projects — Data Science Group

» Hall A SoLID: Kishansingh Rajput
« Particle ID

- Hall D CCP: Nikhil Kalra
- Particle ID

- Hall D AIEC calibration: Diana McSpadden
« Online calibration using Gaussian Processes

- Hydra:Thomas Britton

* Online Monitoring
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Hydra — Detector Monitoring

+ Plenty of detector issues that are not
alarmable in the traditional sense but
still detectable

+ Every run produces an initial >22
plots. More thorough monitoring is
performed offline and produces >109
plots.With a run lasting ~2-3 hours
every day there are between ~175 and
875 plots to look at every day. Desire
Al to augment monitoring.

FCAL Pulse Occupancy

FCAL Pulse Occupancy

row

. [ . . : | . . . Ot . . . 1 o i . . . 1
20 40 0 20
column ; column

LED Light pulser left on

HydraRun also saw the FDC problem, which | probably would have missed inspecting it by eye.
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Diana McSpadden

AIEC: Stabilizing Gain in the Central Drift Chamber

Accelerate the calibration from

months to minutes.

l. Gain Correction Factor: CDC Voltage Gain
calibration

2. Time to Distance: track fitting calibration

Calibration is required to provide
reliable PID for physics analysis

Considerations:

- External environmental conditions
(temperature, pressure)

- Changing beam conditions (current)

Features used:
*Atmospheric pressure

* Temperature

* Current drawn from CDC high
voltage board.

GlueX CDC (one half
controlled by GP)

Atm. Pressure (kPa)

—— Temp. Input Enabled
- e Tuned HV: [2113-2140] V
T % » HV=2130V
s
.
... ...'.-
o oo,
oy o...
.-“‘M o,
v Peees, M’W
90,9000t 0qneattunstestetansaesneg®0et S "are, ek i
o,
i PR ,-F"“""u““.w«'«u.“"m
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