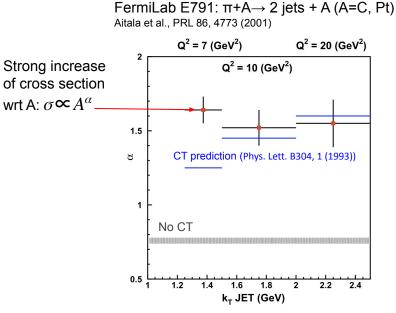

# LOI to PAC 50: Color Transparency in Dirty Kinematics

<u>Shujie Li,</u> Jennifer Rittenhouse-West (LBL) Douglas Higinbotham, Holly Szumila-Vance (JLab) Carlos Yero ( ODU)

> JLab Hall A/C Summer Meeting 06, 2022




### **Color Transparency**

pQCD: small size color singlet (quarks and gluons) will have suppressed interaction with hadrons (color coherence)  $\Rightarrow$  suppression of initial/final state interaction in nuclear QE scattering (color transparency)

Observed in HEP:

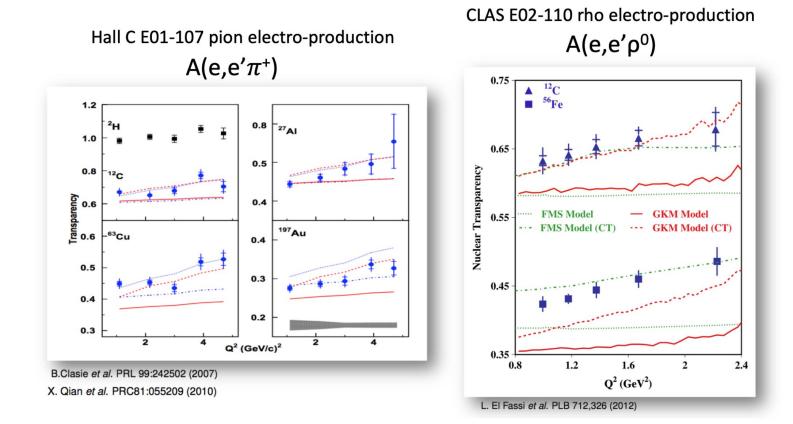
- Pion dissociation
- Photoproduction of J/psi
- Vector meson production



#### **CT at Intermediate Energy**

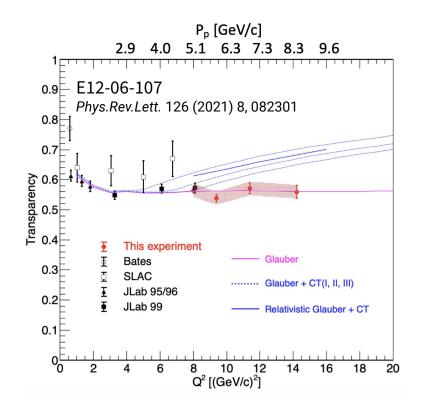
- Search for Point-like configuration (PLC)
- Nuclear transparency T(Q<sup>2</sup>) = measured xsection / PWIA

$$T_A = \frac{\sigma_A}{A \sigma_N} \frac{\text{(nuclear cross section)}}{\text{(free nucleon cross section)}}$$


- contraction/expansion v.s. CT
- **Coherence length**  $l_c$ : max longitudinal distance before completely losing coherence, determined by the minimal characteristic internal excitation energies of the hadron h.

$$l_c = \frac{2p_h}{\Delta M_h^2} \qquad \Delta M_h^2 = m_{inter}^2 - M_h^2$$

 $l_c$  increases with hadron momentum(Q2), and decreases with  $\Delta M^2$ 


#### **CT at Intermediate Energy: mesons**

Enhancements consistent with CT (increasing with Q<sup>2</sup> and A) observed



4

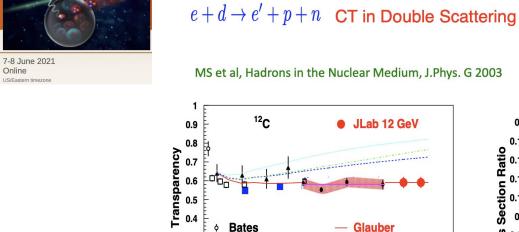
### **CT at Intermediate Energy: Baryons**

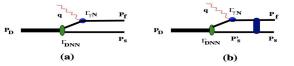


- NO sign of CT up to Q2 = 14.2 GeV2
- Updated ∆M<sup>2</sup> value:
  - Old prediction from theories and high energy data:

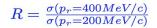
0.7 - 1.1 GeV (CTI,II,III)

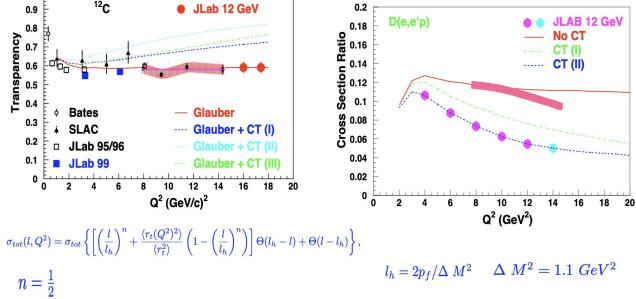
 $\circ$  New fit to describe E12-06-107 results:  $\Delta M^2 \! > = 2 \text{ GeV}$ 


(Calculation by Wim Cosyn and Misak Sargsian)



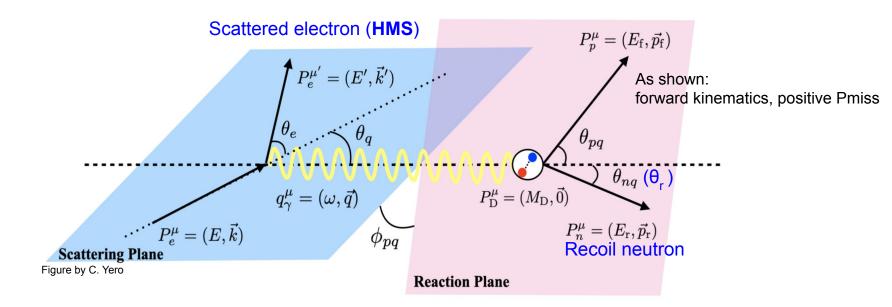




The Future of Color Transparency and Hadronization Studies at Jefferson Lab and Beyond


https://indico.jlab.org/event/437/contributions/8508/



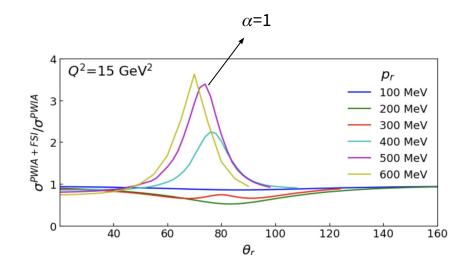



MS et al, Hadrons in the Nuclear Medium, J.Phys. G 2003





### D(e,e'p)


#### Struck proton (SHMS)

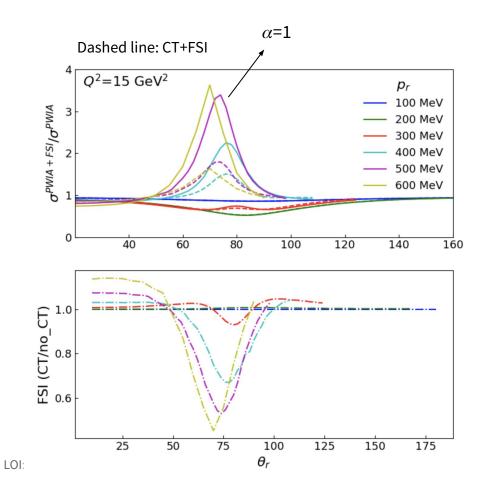


#### FSI v.s. CT

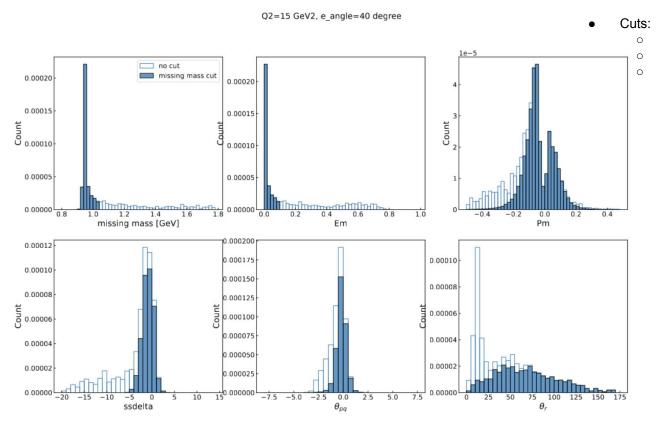
Choose perpendicular kinematics to maximize FSI:

 $\alpha = (E_n - p_n \cos\theta_{\gamma n})/m_n \to 1$ 




#### FSI v.s. CT

Choose perpendicular kinematics to maximize FSI:


 $\alpha = (E_n - p_n \cos\theta_{\gamma n})/m_n \to 1$ 

Double ratio:

$$R(Q^2) = \frac{\sigma(p_{miss}large; Q^2) \downarrow}{\sigma(p_{miss}small; Q^2) \uparrow}$$



#### SIMC with radiative effect



- Simulation weighted by
  - xsection (Av18, PWIA)

-10<hsdelta<10

theta\_rq > 40 degree

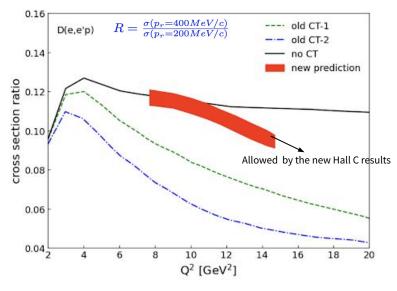
(missing mass - 0.9383)<0.1

• FSI factor (from Misak's code)

#### **Rate Estimation**

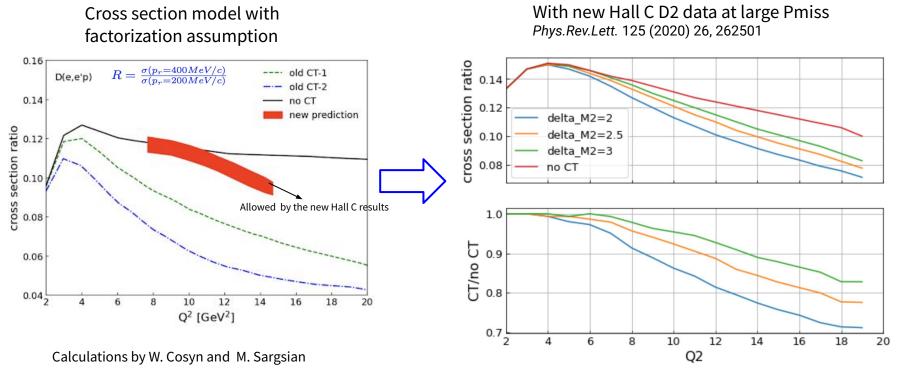
| Kinematics | $Q^2$  | $P_e ~({ m GeV}/c)$ | $\theta_e ~(\mathrm{deg})$ | $P_p ~({ m GeV}/c)$ | $\theta_p \ (\mathrm{deg})$ |
|------------|--------|---------------------|----------------------------|---------------------|-----------------------------|
| 1          | 8.046  | 6.713               | 19.000                     | 5.121               | 27.380                      |
| 2          | 9.958  | 5.694               | 23.000                     | 6.154               | 22.972                      |
| 3          | 11.941 | 4.637               | 28.000                     | 7.222               | 19.073                      |
| 4          | 14.026 | 3.525               | 35.000                     | 8.341               | 15.363                      |
| 5          | 15.127 | 2.939               | 40.000                     | 8.931               | 13.461                      |

| Kin | ematics | $P_m$ | $	heta_r$ | $Q^2$ | Rate/hour | PAC days |  |
|-----|---------|-------|-----------|-------|-----------|----------|--|
| 1   | a       | 0.08  | 79.06     | 7.49  | 5690.81   | 1.5      |  |
|     | b       | 0.41  | 73.33     | 7.88  | 149.04    |          |  |
| 2   | a       | 0.08  | 77.15     | 9.52  | 1536.20   | 3.0      |  |
|     | b       | 0.41  | 74.44     | 9.77  | 36.47     |          |  |
| 3   | a       | 0.08  | 77.40     | 11.62 | 413.28    | 5.7      |  |
|     | b       | 0.41  | 75.46     | 11.70 | 9.16      |          |  |
| 4   | a       | 0.09  | 77.28     | 13.76 | 93.63     | 25.1     |  |
|     | b       | 0.40  | 75.95     | 13.74 | 2.07      |          |  |
| 5   | a       | 0.09  | 78.73     | 14.94 | 36.63     | 55.9     |  |
|     | b       | 0.40  | 75.72     | 14.83 | 0.93      |          |  |


- Each kinematics setting can cover BOTH high and low Pmiss.
  - Kin a: 0.05<Pm<0.15
  - Kin b: 0.30<Pm<0.60
- Goal: 1000 events at large Q2 setting
- Cut on missing mass rejected most of radiative tails and significantly reduced high Pmiss event counts.
- 11 GeV beam
- Assumed luminosity = 80uA \* 25cm cell \* 0.8 efficiency factor

⇒ high beam power ONLY possible after ESR upgrade (according to D. Meekins)

#### 95 PAC days 😱


#### Improvements: sensitivity check

## Cross section model with factorization assumption



Calculations by W. Cosyn and M. Sargsian

#### Improvements: sensitivity check



LOI: CT in Dirty Kinematics

#### Improvements: sensitivity check

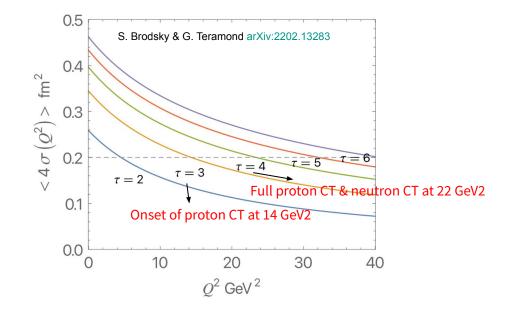
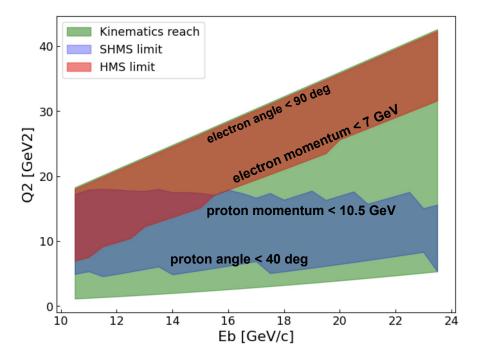
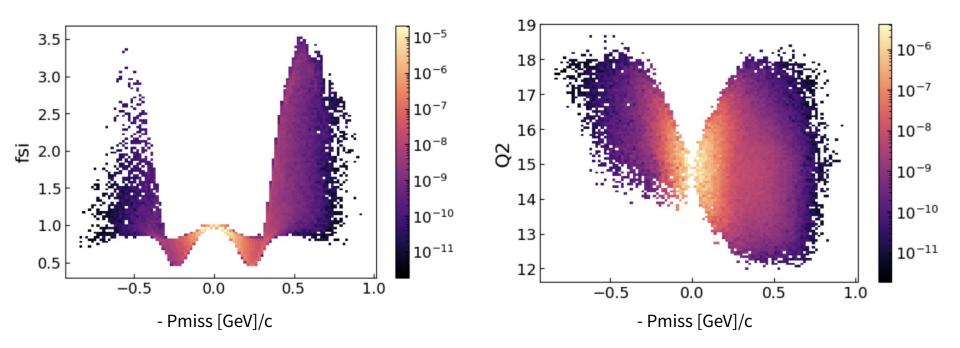
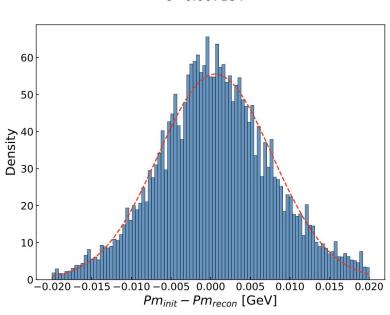




FIG. 2. The transverse impact area  $\langle 4\sigma(t) \rangle$  as a function of  $Q^2 = -t$  and the number of constituents  $\tau$  implies a significant delay in the onset of color transparency at intermediate energies for  $\tau > 2$ . The dashed line indicates the characteristic transverse size required for the onset of color transparency.

#### **Improvements: kinematics optimization**

- Higher beam energy ?
  - 30% higher rates with 11.5 GeV beam
  - Q2 range will not get better with higher Ebeam due to spectrometer limits
- Use detectors with larger acceptance?


More suggestions are welcome!




### **THANK YOU!**

#### **Phase Space**

Q2=15, e\_angle=40. Histogram weighted by xsection and FSI ratio from Misak's calculation





#### $\sigma = 0.007184$

1.