The PVEMC Experiment

First Measurement of the Flavor Dependence of Nuclear PDF Modification Using Parity-Violating Deep Inelastic Scattering

Spokespersons: John Arrington, Rakitha Beminiwattha, Dave Gaskell, Juliette Mammei, Paul E. Reimer

Hall A/C Meeting June 17, 2022

The EMC Effect

Modification of inelastic structure functions in nuclei

- → Discovered by EMC collaboration in 1983 (almost 40 years ago!)
- → Clear indication that PDFs (and quark dynamics) modified in nuclei
- → Despite intense experimental and theoretical investigation – no consensus on origin of EMC effect
- → Additional "standard" measurements planned (running this summer/fall)

Progress likely requires *new observables*→ Polarized EMC effect

Flavor Dependence of the EMC Effect

CBT calculation predicts a flavor dependent EMC effect for $N \neq Z$ nuclei

Cloët, Bentz, and Thomas, PRL 102, 252301 (2009)

Experimentally, this flavor dependence has not been observed directly → Observation of flavor dependence would provide key test of models

Jefferson Lab

Hints of Flavor Dependence of EMC Effect

- Flavor dependence of EMC Effect would explain 2/3 of the NuTeV anomaly [Cloët, Bentz, and Thomas, PRL 102, 252301 (2009)]
- Tension between nuclear dependence of electron/muon and neutrino scattering in anti-shadowing region
- Existing pionic Drell-Yan data favors flavor dependence (weakly)
- EMC-SRC correlation if EMC effect driven by correlated NP pairs, would naturally expect difference between up and down quark distributions
- Global analysis including recent MARATHON data [Cocuzza, et al PRL 127, 242001]

Measurement of Flavor Dependence

Several techniques possibly sensitive to flavor dependence of EMC effect

Pionic Drell-Yan:

- → Previous data of limited discriminating power [Dutta et al, PRC 83, 042201 (2011)]
- → AMBER @ CERN will make measurements over the range 0.08<x<0.34)</p>

<u>SIDIS:</u>

- → Flavor tag struck quark via π +/ π production
- \rightarrow Heavy targets: hadron attenuation effects complicate interpretation
- \rightarrow Light targets: size of the EMC effect is small
- → Any target: factorization of hard scattering and quark hadronization required

Inclusive DIS:

- \rightarrow Require target with similar A, compare N=Z to N \neq Z
- \rightarrow At best 2σ measurement (as compared to CBT model)
- \rightarrow Additional model dependence from A-dependence, n/p ratio

$$\frac{\sigma^{DY}(\pi^+ + A)}{\sigma^{DY}(\pi^- + A)} \approx \frac{d_A(x)}{4u_A(x)}$$
$$\frac{\sigma^{DY}(\pi^- + A)}{\sigma^{DY}(\pi^- + D)} \approx \frac{u_A(x)}{u_D(x)}$$

PVDIS and Flavor Dependence

PVDIS sensitive to different combination of PDFs

 \rightarrow Like inclusive DIS, avoids complications due to complicated final states

$$A_{PV} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right]$$

Suppressed

Expanding about $u_A = d_A$ limit, neglecting sea quarks:

$$a_1(x) \approx \frac{9}{5} - 4\sin^2\theta_W - \frac{12}{25}\frac{u_A^+ - d_A^+}{u_A^+ + d_A^+} \qquad q^\pm = q(x) \pm \bar{q}(x)$$

PVDIS directly sensitive to difference in up and down quark distributions in nuclei

PVEMC with SOLID

High precision measurement possible with
SOLID in PVDIS configuration
→ Identical spectrometer/detector
configuration as PVDIS (baffles, etc.)

PVEMC measurement requires target with N ≠Z and large EMC effect

- → ⁴⁸Ca satisfies both requirements with smaller radiation length than heavier targets (e.q., gold or lead)
- → Sufficient ⁴⁸Ca at JLab to provide 2.4 g/cm² thickness – some processing of calcium will be required

Kinematic Coverage and Precision

Red points indicate projected xbins and precision on A_{PV}

68 days of production on ${}^{48}Ca$ at 80 μ A with maximum long. polarization

- → Excellent coverage in relevant x-range
- → Better than 1% statistical precision in most bins

Projections - Sensitivity

Systematic Uncertainties

Effect	Uncertainty (%)		
Beam polarimetry	0.4	Same as PVDIS on LD2	
$R^{\gamma Z}/R^{\gamma}$	0.2	PRD 84:074008, 2011	
Pions (bin-to-bin)	0.1-0.5	Constrained by measurements at opposite field	
Charge-symmetric background	<0.1		
Radiative corrections (bin-to-bin)	0.5-0.1		
Other corrections (including CSV)	0.2		
PDF uncertainties	0.2	Constrained by MARATHON, PVDIS, BONUS12	
Total Systematic	0.6-0.7		

Statistical uncertainty = 0.7-1.3%

Total systematic uncertainty expected to be comparable or smaller than statistical uncertainty

Beamtime Request

Request 83 days total for first measurement of flavor dependence of EMC effect via PVDIS from ⁴⁸Ca

→ Time included for spectrometer optics, charge symmetric background measurements, commissioning and polarimetry

Activity	Time (days)	E (GeV)	Current (μA)
⁴⁸ Ca Production	68	11	80
Optics	2	4.4	Up to 80
Positive polarity	4	11	80
Møller Polarimetry	4	11	2
Commissioning	5	11	Up to 80
Total	83		

Summary

- Despite renewed interest in recent years, no consensus on the origin or flavor dependence of the EMC Effect
- New observables required to provide more insight
- PVDIS offers a precise, interpretable measurement of possible flavor dependence of the EMC effect
- PR12-22-002: Measurement of PVDIS from ⁴⁸Ca using SOLID apparatus
 - 83 days total (68 days production)
 - Will provide 7-8 σ test of CBT model
 - Several aspects less challenging than approved PVDIS on LD2 experiment: lower rates, no target boiling, shorter target (better control of acceptance and collimation)

Radiation

Experiment	Top of the Hall	Estimated	Measured
	Neutron Dose	Boundary DOSE	Boundary DOSE
	(m^{-2})	(mrem)	(mrem)
PREX-I	4.50E+12	4.2	1.3
PREX-II	5.80E+12	2.0	1.2
CREX	1.50E+13	1.8	1.0
LD-PVDIS 6 GeV	1.90E+12	0.7	n/a
LD-PVDIS 11 GeV	3.40E+12	1.3	n/a
⁴⁸ Ca-PVDIS 11 GeV	6.00E+12	2.5	n/a

Comparison to previous experiments

Radiation Dama	ge to Materials/Electronics
III A Rough	n Overview Only !!!
commercial COTS ha	irdened electronics
acceler	ators
Semiconductors	
Polymers	
Ceramics	
Metals and alloys	
10.0 1E2 1E3 1E12 1E13 1E14 1	1E4 1E5 1E6 1E7 1E8 1E9 1E10 1E11 Gy E15 1E16 1E17 1E18 1E19 1E20 1E21 1E22 n/cm ²
- no damage - mild to severe damage - destruction	III Assumption III (depends on particle energy spectra) 1 neutron (1MeV) /cm ² ~ 3.3E-11 Gy

© Lockheed Martin

Electronics damage threshold exceeded only in area near downstream beamline (FLUKA simulations)

Backgrounds

Estimated charge symmetric background → Model scaled to agree w/Hall C e+/e- ratios

Inclusive DIS – Sensitivity to Flavor Dependence

E12-10-008 will inclusive DIS from ⁴⁸Ca/⁴⁰Ca

→ Assuming n/p ratio known, A dependence known, sensitive to flavor dependence of EMC effect

Plot shows projections assuming 4x proposed statistics

 \rightarrow Approximately 2.3 σ sensitivity (when normalization uncertainty included)

