Measurement of the Beam-Normal Single-Spin Asymmetry Using Deep Inelastic Scattering With SoLID

William Henry ¹ Mike Nycz (Contact) ² Ye Tian ³ Weizhi Xiong ³ Xiaochao Zheng ²

¹Jefferson Lab, ²University of Virginia, ³Syracuse University

June 17, 2022

Hall A/C Collaboration Meeting

Mike Nycz (University of Virginia) Measurement of the Beam-Normal Single-Spin As

- At the Born level, normal SSAs are zero due to time-reversal invariance as well as parity conservation
 - N. Christ and T.D. Lee., Phys. Rev. 143 (1965)
- A non-zero normal single-spin asymmetry indicates multi-photon exchange
- Normal single-spin asymmetries provide access to the imaginary part of the TPE
 - Due to the interference of single and two photon

k(k') = four-momentum of initial (scattered) electron

Measurement of the Beam-Normal Single-Spin As

- At the Born level, normal SSAs are zero due to time-reversal invariance as well as parity conservation
 - N. Christ and T.D. Lee., Phys. Rev. 143 (1965)
- A non-zero normal single-spin asymmetry indicates multi-photon exchange
- Normal single-spin asymmetries provide access to the imaginary part of the TPE
 - Due to the interference of single and two photon

k(k') = four-momentum of initial (scattered) electron

Measurement of the Beam-Normal Single-Spin As

- At the Born level, normal SSAs are zero due to time-reversal invariance as well as parity conservation
 - N. Christ and T.D. Lee., Phys. Rev. 143 (1965)
- A non-zero normal single-spin asymmetry indicates multi-photon exchange
- Normal single-spin asymmetries provide access to the imaginary part of the TPE
 - Due to the interference of single and two photon

< ロ > < 同 > < 回 > < 回 > < 回 >

- At the Born level, normal SSAs are zero due to time-reversal invariance as well as parity conservation
 - N. Christ and T.D. Lee., Phys. Rev. 143 (1965)
- A non-zero normal single-spin asymmetry indicates multi-photon exchange
- Normal single-spin asymmetries provide access to the imaginary part of the TPE
 - Due to the interference of single and two photon

- At the Born level, normal SSAs are zero due to time-reversal invariance as well as parity conservation
 - N. Christ and T.D. Lee., Phys. Rev. 143 (1965)
- A non-zero normal single-spin asymmetry indicates multi-photon exchange
- Normal single-spin asymmetries provide access to the imaginary part of the TPE
 - Due to the interference of single and two photon

▶ < ∃ ▶</p>

Normal Single Spin Asymmetries

- Nomenclature
 - Transverse beam, analyzing power, etc..., Beam-normal
- Inclusive normal single-spin asymmetries can be separated into
 - Target-normal single spin asymmetry
 - Beam-normal single spin asymmetry
 - Electron beam polarized normal to the scattering plane
 - Unpolarized target
- From the ϕ dependence of the measured asymmetry, the beam-normal SSA can be determined

$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = \mathbf{A}_{\mathbf{n}} \sin(\phi)$$

Theoretical Predictions

- There are a limited number of theoretical predictions for the beam-normal SSA
- Current parton model predictions for the beam-normal SSA:
 - A. Metz et al., Phys. Lett. B 643 (2006)
 - Exchange of two photons occurs between lepton and same quark
 - Prediction for beam-normal SSA: 10⁻⁶ 10⁻⁷
- Renewed interest in BNSSA from theorists
- Since data on the two-photon exchange effect in DIS are quite limited
 - "Measurement of $A_n,$ to even 10% relative uncertainty, would be a major step forward"
- A high precision measurement of the beam-normal SSA is necessary for:
 - Comparison with expected predictions
 - Constraining TPE models

• □ ▶ • @ ▶ • E ▶ • E ▶

Summary of Two-Photon Exchange: DIS

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

- Investigations in the TPE date back to measurements in the 1960's
- Measured by
 - Differences in the ratio of cross sections $\rightarrow \frac{e^+}{e^-}$ or $\frac{\mu^+}{\mu^-}$
 - Normal SSA
- TPE in the DIS regime: Far less investigation
 - Beam-normal SSA in DIS \rightarrow (nearly) non-existent
 - Small asymmetries challenging to measure
 - Possible to be measured with SoLID

Summary of Two-Photon Exchange: DIS

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Non-zero: 2.89 σ

Hall A E07-013

J. Katich et al., Phys. Rev. Lett. 113 (2014)

Measurement of the Beam-Normal Single-Spin As

∃ >

Summary of Two-Photon Exchange: DIS

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Beam-normal single spin asymmetry DIS measurement

Hall A E08-011 (PVDIS)

D. Wang et al., Phys. Rev. C 91 (2015)

Summary of Elastic Beam-Normal Single Spin Asymmetry

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Elastic Beam-Normal Single Spin Asymmetry Measurements

- F. E. Maas et al., Phys. Rev. Lett. 94 (2005)
- D. S. Armstrong et al., Phys. Rev. Lett. 99 (2007)
- D. Androić et al., Phys. Rev. Lett. 107 (2011)
- S. Abrahamyan et al., Phys. Rev. Lett. 109 (2012)
- A. Esser et al., Phys. Rev. Lett. 121 (2018).
- B. Gou et al., Phys. Rev. Lett. 124 (2020)
- D. Androić et al., Phys. Rev. C 104 (2021)

Mike Nycz (University of Virginia)

Solenoidal Large Intensity Deivde (SoLID)

- M. Schlegel Phys. Rev.D 87
 - "In principle, single-spin observables in inclusive DIS with either the lepton or nucleon being transversely polarized are equally fundamental"
- Beam-normal SSA measurement is challenging due to the smallness of the asymmetry
- SoLID PVDIS configuration
 - ✓ High Luminosity
 - ✓ Large azimuthal coverage
- Provides a unique opportunity to measure the BNSSA
- Approved SoLID run group experiment E12-11-108A/E12-10-006A
 - TNSSA measurement on transversely polarized proton and polarized ³He (neutron) targets

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Experiment Overview

- SoLID configuration: PVDIS
 - Scattering angle $22^{\circ} < \theta < 35^{\circ}$
 - Large azimuthal coverage
- Beam Energies
 - 6.6 GeV and 11 GeV
- Beam Polarization
 - Transversely polarized
- Beam current
 - 6.6 GeV: 70 μA
 - 11 GeV: 70 μA
 - SoLID Review Committee suggestion to investigate higher beam current
- Target
 - PVDIS Hydrogen target

Experiment Overview

- SoLID configuration: PVDIS
 - Scattering angle $22^{\circ} < \theta < 35^{\circ}$
 - Large azimuthal coverage
- Beam Energies
 - 6.6 GeV and 11 GeV
- Beam Polarization
 - Transversely polarized
- Beam current
 - 6.6 GeV: 70 μA
 - 11 GeV: 70 μA
 - SoLID Review Committee suggestion to investigate higher beam current
- Target
 - PVDIS Hydrogen target

Experiment Overview

- SoLID configuration: PVDIS
 - Scattering angle $22^{\circ} < \theta < 35^{\circ}$
 - Large azimuthal coverage
- Beam Energies
 - 6.6 GeV and 11 GeV
- Beam Polarization
 - Transversely polarized
- Beam current
 - 6.6 GeV: 70 μA
 - 11 GeV: 70 μA
 - SoLID Review Committee suggestion to investigate higher beam current
- Target
 - PVDIS Hydrogen target

Measurement of the Beam-Normal Single-Spin As

Beam Polarization and Systematic Uncertainties

- Electron beam can be polarized transversely at the injector
- The polarization can be measured using Moller (but requires rotation prior to measurement)
- Mott polarimeter at the injector can be used in addition to Moller

- Pion background: 1%
- Polarimetry: 5%
 - Nominal 3% plus additional uncertainty from rotating spin
- Mott: 2-3%
- Logitudinal Polarization: <1%
- Uncertainties will be dominated by statistics

Projected Results

• Full SoLID simulation to estimate statistical uncertainty

• $\Delta_{stat} = 1/\sqrt{N}/P_b$

- Generate pseudo-data following $A_n \sin(\phi)$ form: ($A_n=20 \text{ ppm}$)
- Studied the impact of an S_L component to the extracted A_n
 - **O** Subtract $S_L A_{PVDIS}$ and fit $sin(\phi)$ distribution: 3° uncertainty in S_L included
 - **2** $sin(\phi)$ weighted integral to extract beam-normal SSA
 - **3** Multi-parameter fit of the form: $A_n \sin(\phi + \phi_{offset}) + S_L A_{PVDIS}$

June 17, 2022

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Multi-parameter fit of the form: $A_n \sin(\phi + \phi_{offset}) + S_L A_{PVDIS}$

June 17, 2022 11/14

э.

Projection: Results and Uncertainty

- Combining bins, can determine the beam-normal SSA to the level of:
 - 6.6 GeV ≈2 ppm
 - 11 GeV ≈3 ppm
- Check Q² dependence

Beam Time Request

Purpose	Time (Days)	Energy (GeV)	Beam Current (μ A)
Commissioning	2	varies	as needed
Polarimetry	4	varies	as needed
Pass change	0.67	N/A	N/A
Reverse SoLID polarity	0.67	N/A	N/A
Reverse polarity run	0.33	6.6	70
Reverse polarity run	0.33	11	70
40-cm LH ₂ Production	17	11	70
40-cm LH ₂ Production	13	6.6	70

A total of 38 PAC days

э

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Summary

- Will be the first high-precision measurement of the beam-normal single spin asymmetry in deep inelastic scattering
- Uses the standard PVDIS configuration and target system
 - Use of a transversely polarized beam will largely be a scheduling issue
- Beam-normal single spin asymmetry provides a powerful tool to study the two-photon exchange effect
- Important for theory models
 - How close to the simple parton model calculation? Enhancement?
 - Useful in constraining TPE models

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank You!

Mike Nycz (University of Virginia) Measurement of the Beam-Normal Single-Spin As

June 17, 2022 14/14

• • • • • • • • • • • •

Extracted A_n

June 17, 2022 14/14

Resonance

<ロト < 四ト < 三ト < 三ト

Mike Nycz (University of Virginia) Measurement of the Beam-Normal Single-Spin As

 ▶
 ■
 ■

 >

 >

 <

Pair Production Background

June 17, 2022 14/14

< 口 > < 同