The BigBite Calorimeter (BBCAL) - Design, Purpose, & Performance

Provakar Datta

(On behalf of the SBS Collaboration)

Hall A/C Collaboration Meeting, 06/17/2022

Introduction

- For the next couple of years (at least) Hall
 A's future is SBS.
- The BigBite Spectrometer is being used to detect and fully characterize the kinematics of the scattered e⁻s for almost all the SBS collaboration experiments.
- The BigBite Calorimeter A.K.A. BBCAL is an integral part of it. BBCAL has two parts:
 - Pre-Shower (PS) Calorimeter
 - Shower (SH) Calorimeter

Jefferson Lab

The BigBite Spectrometer in Hall A (Side View)

Design: Pre-Shower (PS)

	+y, a	way fro	m) -	⊦z	,to pa	ow art	/ai	rc le
	D	eamine	•	+×	r †	0		arc	10
26	51	50	↓ ↓		h.	ot	to	m	(
25	49	48				0			
24	47	46							1
23	45	44							I
22	43	42							ł
21	41	40							
20	39	38							
19	37	36							
18	35	34							ł
17	33	32							l
16	31	30							
15	29	28							
14	27	26							I
13	25	24							l
12	23	22							l
11	21	20							
10	19	18							
9	17	16							
8	15	14							
7	13	12							
6	11	10							
5	9	8							I
4	7	6							
3	5	4							
2	3	2							
1	1	0							-
	2	1							1

Jefferson Lab

UCONN

ds e motion s the

- PS is made of 52 rad-hard lead-glass blocks.
- Signals generated in each block are readout by a PMT.
- Block dimension: 9 x 9 x 29.5 cm³
- Blocks are stacked in 26 rows of 2 columns facing each other.
- mu-metal shielding around each block.

Design: Shower (SH)

Jefferson Lab

- BB Shower is made of 189 lead-glass blocks.
- Signals generated in each block are readout by a PMT.
- Block dimension: 8.5 x 8.5 x 34 cm³
- Blocks are stacked in 27 rows of 7 columns facing the spectrometer axis.
- mu-metal shielding outside & between rows.

Basic Working & Purpose

- High energy *e*⁻s lose energy in lead-glass by the formation of **electromagnetic shower**.
 - \circ PS thickness is not enough to stop them. So, e^-s deposit only a fraction of their energy in it.
 - \circ SH, on the other hand, define the 'End of the road' for incoming e^-s by containing them fully.
- Primary uses of BBCAL:
 - 1. Measures the scattered e^- energy and crudely determines the track position.
 - 2. Provides handle for pion background rejection (PS energy deposit is used for this purpose).
 - 3. Provides trigger for the BigBite spectrometer.
 - 4. Gives constraint for the track search region.

1. Energy Measurement

Detect, Digitize, & Convert (from mV to GeV) the signal produced by EM shower in PS and SH modules.

Jefferson Lab

SBS-4, SBS 30% field Data

2. pion Background Rejection

Jefferson Lab

- pions produce MIP like signal in PS modules in the momentum range of interest.
- Peak due to pions is easily distinguishable from the e⁻ peak.
- Hence, a simple cut on the PS energy can reject significant number of pions.
- One can also use pion peak positions to check the quality of PS calibration.

3. BigBite Trigger: Logic & Implementation

- · 0					
Trigger Sums	Associated SH and PS rows				
SC 25-26	SH 26 + SH 27 + PS 25 + PS 26				
SC 24-25	SH 25 + SH 26 + PS 24 + PS 25				
SC 23-24	SH 24 + SH 25 + PS 23 + PS 24				
SC 22-23	SH 23 + SH 24 + PS 22 + PS 23				
SC 21-22	SH 22 + SH 23 + PS 21 + PS 22				
SC 20-21	SH 21 + SH 22 + PS 20 + PS 21				
SC 19-20	SH 20 + SH 21 + PS 19 + PS 20				
SC 18-19	SH 18 + SH 19 + SH 20 + PS 18	+ PS 19			
SC 17-18	SH 17 + SH 18 + SH 19 + PS 17	+ PS 18			
SC 16-17	SH 16 + SH 17 + SH 18 + PS 16 + PS 17				
SC 15-16	SH 15 + SH 16 + SH 17 + PS 15 + PS 16				
SC 14-15	SH 14 + SH 15 + SH 16 + PS 14 + PS 15				
SC 13-14	SH 13 + SH 14 + SH 15 + PS 13 + PS 14				
SC 12-13	SH 12 + SH 13 + SH 14 + PS 12 + PS 13				
SC 11-12	SH 11 + SH 12 + SH 13 + PS 11 + PS 12				
SC 10-11	SH 10 + SH 11 + SH 12 + PS 10 + PS 11				
SC 9-10	SH 9 + SH 10 + SH 11 + PS 9 + PS 10				
SC 8-9	SH 8 + SH 9 + SH 10 + PS 8 + PS 9				
SC 7-8	SH 7 + SH 8 + PS 7 + PS 8				
SC 6-7	SH 6 + SH 7 + PS 6 + PS 7				
SC 5-6	SH 5 + SH 6 + PS 5 + PS 6				
SC 4-5	SH 4 + SH 5 + PS 4 + PS 5				
SC 3-4	SH 3 + SH 4 + PS 3 + PS 4				
SC 2-3	SH 2 + SH 3 + PS 2 + PS 3				
SC 1-2	SH 1 + SH 2 + PS 1 + PS 2				

- Overlapping SH and PS row sums constitute the trigger logic.
- Logical OR of all the discriminated sums make the final trigger.

BBCAL Front-End

BigBite Trigger: Performance

BBCal Trigger Sums vs BBSH rows

All the trigger sums associated to same SH row, fire uniformly.

* https://logbooks.jlab.org/entry/3927778

4. Constraint for Track Search Region

- We reconstruct scattered e⁻ tracks in BigBite backwards.
- First, we define a search region around SH cluster position.
- Then propagate that region to all the GEM layers and search for tracks within.
- SH cluster position also gives starting vertical position and vertical angle for track search.

Jefferson Lab

- This utility of BBCAL makes replay possible for SBS experiments!
- The constraint reduces the search region to 2-3% of the entire GEM active area.
- Good BBCAL energy calibration is necessary to use this feature.
 - Better calibration lets us optimize the search region which in turn improves the reconstruction efficiency significantly.

Cosmic Calibration

Two primary methos of calibration – 1. Cosmic Calibration & 2. Beam Calibration (using LH₂)

- Perform HV scan over a broad range.
- Get α by fitting Peak Position vs. HV plot, using: Peak Pos. = const × HV^{α}
- Only need to do this once since α value for a PMT should be stable.

- Take a cosmic run with enough events.
- Fit the ADC amplitude distributions and extract peak positions for individual SH and PS blocks.

Generate new HV settings that align Peak positions at the trigger to target ADC amplitude, using:

 $HV_{new} = HV_{old} \left[\frac{\text{Target ADC Amp.}}{\text{Current ADC Amp.}} \right]^{\frac{1}{o}}$

Beam Calibration: Procedure

> Method:

 $\succ \chi^2$ minimization:

Jefferson Lab

$$\chi^{2} = \sum_{i=1}^{N} \left(E_{e}^{i} - \sum_{k=0}^{M} C_{k} A_{k}^{i} \right)^{2},$$
$$= \sum_{i=1}^{N} \left(\left(E_{e}^{i} \right)^{2} + \left(\sum_{k=0}^{M} C_{k} A_{k}^{i} \right)^{2} - 2E_{e}^{i} \sum_{k=0}^{M} C_{k} A_{k}^{i} \right)$$

> Minimizing χ^2 with respect to the coefficients:

$$\frac{\partial \chi^2}{\partial C_j} = 0 \Rightarrow \sum_{i=0}^N \sum_{k,l=0}^P \left(\begin{array}{c} A_l^i - C_k^i \frac{A_k^i A_l^i}{E_e^i} \\ \downarrow & \downarrow \\ B & C & M \end{array} \right) = 0$$

> Solving *M* linear equations to get the C_j s:

$$C = M^{-1}B$$

- E_e^i : Track momentum at i^{th} event.
- A_k^i : Energy deposited in k^{th} block at i^{th} event.
- C_k : Gain coefficient of the k^{th} block.
- *N*: Total # events being analyzed.
- P: Total # BBCAL (189 SH + 52 PS) blocks.

Primary Cuts

- 1. No. of tracks per event = 1
- 2. No. of GEM planes that had hit > 3
- 3. $|(vertex)_z| < 0.08 m$
- 4. HCAL cluster energy > 0.025 GeV
- 5. PS cluster energy > 0.2 GeV
- 6. SH + PS cluster energy > 1.9 GeV
- 7. |E/p − 1| < 0.3
- 8. $2.1 < p_{rec} < 3.0$ (GeV)

Beam Calibration: Preliminary Results

- Initially we see a strong negative correlation between E_{clus}/p_{rec} and p_{rec} which almost disappears with just 1st round of calibration with beam.
- Energy resolution improves drastically with beam calibration.

Jefferson Lab

Beam Calibration: Preliminary Results contd.

Configuration	E _{beam} (GeV)	E _{e'} (GeV)	Magnet C	urrent (A)	BBCAL Resolution (%)		
Configuration			BB	SBS	Before Calib.	After Calib.	
	3.728	2.11	750	0	8.9	6.5	
SBS-4			750	630	8.6	6.6	
			750	1050	9.5	6.6	
SBS-7	7.906	2.67	750	1785	9.4	6.8	
SBS-11	9.91	2.67	750	0	12.3	7.8	
			750	2100	12.2	7.9	
SBS-14	5.965	2.00	750	0	10.5	7.8	
			750	1470	10.7	7.3	
SBS-8			750	0	9.8	6.0	
		2 50	750	1050	9.8	5.8	
	5.965	3.59	750	1470	9.8	5.9	
			750	2100	9.8	5.9	
SBS-9	4.015	1.63	750	1470	9.7	7.8	

Table I: BBCAL energy resolution before and after calibration for all SBS configurations.

- Completed initial calibration of all 13 different settings across 6 SBS configurations.
- Achieved 5.9% energy resolution at
 3.6 GeV scattered e⁻ energy.
- Work in progress for the most challenging setting (SBS-11).

How Good is Cosmic Calibration?

Y-axis represents:

Jefferson Lab

For SH, the differences are mostly concentrated within ±10% but for PS the range is more like ±20%. Not bad at all!

ADC Time Offset Correction

- Left Plot: Shows results of ADC time offset correction for individual shower blocks w.r.t BBHodo cluster mean time. Similar results were achieved for Pre-Shower modules as well.
- Right Plot: Shows the distribution of the difference between BBHodo cluster mean time and ADC time of all blocks of the corresponding SH cluster. Resolution achieved: 2.62 ns (Preliminary).
- Time walk corrections are yet to be implemented.

Jefferson Lab

Biggest Challenge During G_M^n **Run! – The Issue**

SBS Field (%)	Mean (GeV)	Sigma (GeV)	Change w.r.t. 0 field (%)
-25	0.9606	0.0831	9.5
0	1.0612	0.0954	0
25	1.0323	0.0894	2.7
50	1.0295	0.0948	3.0
100	0.9091	0.0834	14.3

- Configuration: SBS-1
- ✤ Target: LH₂
- Events selected: Elastic (Tight cut on W)
- Above plots show the distribution of total BBCAL cluster energy at different SBS field settings.
- Analysis of SBS 0 field data shows that the energy calibration of BBCAL with cosmics was 21% off. In order to compensate for that discrepancy, we have multiplied the total cluster energy with a constant factor of 1.21.
- Preliminary results show, SBS fringe field has non-negligible effect on BBCAL PMT gain.

* https://logbooks.jlab.org/entry/3932475

Biggest Challenge During G_M^n Run! – The Solution

- 2 Turn the magnets ON and then take a quick cosmic run (~30 mins).
- Recalibrate and generate a new set of HVs.

We tried this solution for all the later SBS configurations, and it worked beautifully.

UCONN Jefferson Lab

3 Step Solution:

Hall A/C Collaboration Meeting, 06/17/2022

Summary & Future Work

• We came across a lot of different challenges during SBS- G_M^n run.

Jefferson Lab

- But we could overcome all of those by working as a team and kept notes of all the lessons learned.
- BBCAL trigger during SBS-Gⁿ_M was very stable. It allowed us to set the threshold very high to keep DAQ rate manageable without loosing elastic events.
- Performance of BBCAL look promising even with very preliminary calibrations.
- This is very encouraging since all the upcoming SBS experiments, except for G_E^p 5, will use BBCAL for trigger as well as for energy measurements.
- No hardware upgrade or major changes is required, so BBCAL is pretty much ready for the SBS-Gⁿ_E experiment which is scheduled to run later this fall.

Acknowledgements

- **Core Group:** Bogdan W., Mark Jones, Arun Tadepalli*, Provakar Datta, Eric Fuchey.
- Software/Analysis Support: Andrew Puckett, William Tireman, Gary Penman.
- **DAQ:** Alexandre Camsonne, Bryan Moffit, Ben Raydo.
- Slow Control: Steve Wood.
- Installation: Jessie & his team, Robin & her team, Jack, Ellen, Sebastian Seeds, Bhesha Devkota, Hem Bhatt, Zeke Wertz, Abishek Karki.
- Hardware Support: JLab Electronics group, Chuck Long, Detector Support Group.
- Useful Suggestions: Brad Sawatzky.
- A lot of other people whose name I cannot recall at the moment. **Thank you all!**
- This work is supported by the US Department of Energy Office of Science, Office of Nuclear Physics, Award ID DE-SC0021200.

* Contact

Acknowledgements

- Core Group: Bogdan W., Mark Jones, Arun Tadepalli*, Provakar Datta, Eric Fuchey.
- Software/Analysis Support: Andrew Puckett, William Tireman, Gary Penman.
- **DAQ:** Alexandre Camsonne, Bryan Moffit, Ben Raydo.
- Slow Control: Steve Wood.
- Installation: Jessie & his team, Robin & her team, Jack, Ellen, Sebastian Seeds, Bhesha Devkota, Hem Bhatt, Zeke Wertz, Abishek Karki.
- Hardware Support: JLab Electronics group, Chuck Long, Detector Support Group.
- Useful Suggestions: Brad Sawatzky.
- A lot of other people whose name I cannot recall at the moment. **Thank you all!**
- This work is supported by the US Department of Energy Office of Science, Office of Nuclear Physics, Award ID DE-SC0021200.

Backup Slides

0

provakar1994 / BBCal_replay Public

P master - P1branch O0 tags

Study of the Linear Region of Operation for all the Electronic Modules involved in BigBite Calorimeter Circuit

P. Datta^a, A. Tadepalli^b, M. Jones^b

^aUniversity of Connecticut, Storrs, CT 06269, USA ^bThomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

1. Introduction

In this article, we report the linear region of operation for all the electronic modules involved in BigBite calorimeter (BBCal) circuit. BBCal consists of a Shower (SH) and a Pre-Shower (PS) detector. We have considered the electronic modules involved in the circuits of each of these two parts separately and have come up with a maximum signal amplitude at FADC for the HV calibration using cosmics to avoid saturation during all the proposed Q^2 points of SBS C_{R}^{2} experiment.

Figure 1: 7 channel Shower am-

plifier/summer module

2. Saturation of Electronic Modules

- BigBite Shower Signals from SH PMTs go through the following steps 1,
- Signal from the detector goes into custom made Summer/Amplifier (S/A) module via 12.5 m cable.
- These S/A modules have one-to-one outputs on the back with an approximate gain of 5x. Signals from these output channels go to the FADC via 50m long signal cable.
- The S/A modules also have three outputs per sub-module on the front, each of which gives the amplified (3.5x) sum of 7 inputs (i.e. all the inputs from a single SH row).
- 4. Each such summed outputs then goes into a quad of PS 740 LFI/FO module, where the overlapping row sum for SH and PS takes places in order to form the trigger logic.
- Each of the modules mentioned in the above steps have their own saturation point i.e. the output becomes non-linear when the input amplitude crosses some value. A rough estimation of those saturation points are as follows,
- The outputs on the back of S/A modules saturate when the input crosses 200 mV.
- 2. The outputs on the front of S/A modules saturates at 300 mV.
- 3. 740 PS LFI/FO modules has a single input saturation of 1200 mV.

4. FADC 250 saturates at input beyond 2 V.

UCONN Jefferson Lab

It is clear from the above facts that for SH, the saturation is determined by the back outputs of S/A modules. Hence the detector should be calibrated in such a way so that the amplitude of the input signal to S/A modules do not cross 200 mV.

https://sbs.jlab.org/DocDB/0001/000118/001/BBCal_s ig circuit saturation.pdf

Calibration and analysis scripts for BigBite Calorimeter (BBCal) that is being Provakar Datta Added recommended variable settings for all the different co... a 6224241 on May 12 3 156 commits used for JLab Hall A SBS collaboration golden Run list for BBCal HV scan performed on 11/04/2022 added. 3 months ago experiments macros Added recommended variable settings for all the different configur... last month CC Readme ☆ O stars replay BBCal standalone replay machinary added 7 months ago ③ 1 watching .gitignore .pcm catagory added 5 months ago ₽ 0 forks README.md Update README md 3 months ago get_calibrated_hv.sh 7 months ago Shell scripts for cosmic analysis and gain matching added Releases run_cosmic_analysis.sh Shell scripts for cosmic analysis and gain matching added 7 months ago No releases published Create a new release run_cosmic_replay.sh Shell scripts for cosmic analysis and gain matching added 7 months ago setup_bbcal.sh Setup file for a-oni account added 7 months ago Packages setup_ifarm.csh Environment setup file for ifarm account added 5 months ago No packages published

Go to file

Add file *

Pull requests Issues Marketplace Explore

🔿 Code 💿 Issues 🏦 Pull requests 💿 Actions 📅 Projects 💷 Wiki 🛈 Security 🗠 Insights 🚳 Settings

https://github.com/provakar1994/BBCal_replay

Hall A/C Collaboration Meeting, 06/17/2022

Q ++ m.

8

S Unpin ⊙ Unwatch 1 + ¥ Fork 0 ☆ Star 0 +

About

Code -

Cosmic Peaks – PS and SH

ADC time calculation

• "i" is the sample which has value greater than V_{Mid} and the next sample, "i+1", is less than V_{Mid}.

Jefferson Lab

SBS Fringe Field Effect – PS and SH

UEENN

Jefferson Lab

Example HV Configuration – PS and SH

HV New (V) [25.0 mV Trig. Amp.]

8	-1028.99	-1041.64	-1000.95	-976.77	-998.35	-1019.09	-973.58
2 5 25	-1008.44	-991.15	-1043.65	-997.15	-1012.89	-1009.31	-1023.40
	-1056.81	-979.19	-976.23	-992.80	-1020.78	-1009.43	-1083.06
	-1647.37	-1740.33	-999.67	-993.89	-954.28	-1720.76	-1413.77
	-1714.50	-1483.34	-1648.69	-1691.70	-1525.36	-1300.21	-1569.43
	-1510.27	-1372.37	-1618.88	-1523.47	-1444.75	-1592.01	-1544.54
	-1614.88	-1278.07	-1778.47	-1397.55	-1793.15	-1438.02	-1522.28
	-1734.08	-1477.05	-1690.70	-1429.07	-1677.44	-1410.29	-1736.96
20	-1476.06	-1727.08	-1295.77	-1638.09	-1616.06	-1923.81	-1549.86
	-1808.33	-1369.36	-1763.04	-1277.22	-1798.83	-1568.92	-1722.45
	-1529.72	-1416.05	-1791.81	-1415.72	+1503.75	-1625.63	-1407.01
	-1592.05	-1932.99	-1464.75	-1759.31	-1566.84	-1641.18	-1310.26
15	-1811.69	-1454.09	-1378.26	-1480.24	-1693.19	-1568.63	-1593.67
15	-1653.29	-1618.99	-1689.70	-1340.93	-1656.04	-1719.10	-1768.72
	-1601.45	-1776.30	-1612.52	-1903.02	-1373.28	-1565.30	-1381.80
	-1482.54	-1607.12	-1420.50	-1611.20	-1528.34	-1697.20	-1714.20
	-1745.88	-1690.00	-1871.71	-1709.35	-1528.72	-1584.11	-1372.91
10	-1796.62	-1393.95	-1677.34	-1324.63	-1406.78	-1496.37	-1674.91
10	-1420.48	-1695.57	-1393.79	-1634.46	-1723.26	-1378.64	-1667.13
	-1283.30	-1658.10	-1700.62	-1277.65	-1840.09	-1726.88	-1622.24
	-1701.31	-1754.75	-1786.91	-1636.07	-1785.68	-1676.18	-1634.54
	-1578.82	-1530.72	-1746.78	-1675.13	-1769.06	-1446.46	-1518.36
5	-1656.09	-1630.46	-1249.50	-1492.39	-1487.38	-1609.93	-1711.46
	-1539.04	-1750.86	-1339.70	-1766.82	-954.31	-1004.61	-1682.60
	-1544.17	-1352.58	-1833.16	-1711.78	-1715.93	-1750.16	-1581.21
	-1533.62	-1585.26	-1367.38	-1615.46	-1479.20	-1403.50	-1710.15
	1753,77	-1352.57	1398 14	1758,75	173645	1841,50	1505,55
	1 2	2 3	3 4	4 5	5	6 7	7
							SH co
							+

HV New (V) [25.0 mV Trig. Amp.]

UGONN

Jefferson Lab