

UPDATE ON PION-LT EXPERIMENT

Muhammad Junaid University of Regina, Canada

Hall A/C Summer Collaboration Meeting June 16 – 17, 2022

Contents

E12-19-006 Experiment Collaboration **Experiment Goals** Pion Form Factor L/T Separated Pion Cross sections Pion-LT Experiment Status Summary

E12-19-006 Experiment Collaboration

Spokespersons

Dave Gaskell (JLab), Tanja Horn (CUA), Garth Huber (URegina)

Graduate Students

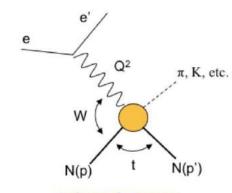
Nathan Heinrich (URegina), Muhammad Junaid (URegina), Jacob Murphy (Ohio U)

Key Members

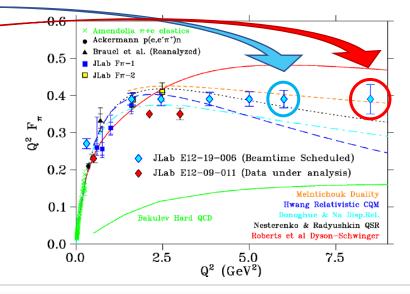
Vijay Kumar (URegina), Vladimir Berdnikov (CUA), Stephen Kay (URegina), Richard Trotta (CUA), Petr Stepanov (CUA), Julie Roche (Ohio U), Carlos Yero (JLab), Ali Usman (URegina)

Experiment Goals

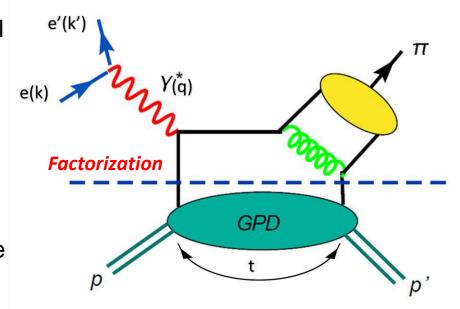
- \Box Pion Form Factor extraction at low Q^2 and comparison with elastic data results from CERN
- \square Pion Form Factor extraction to high Q^2
- ☐ Study the Hard-Soft Factorization Regime
- ☐ Pion Scaling Study



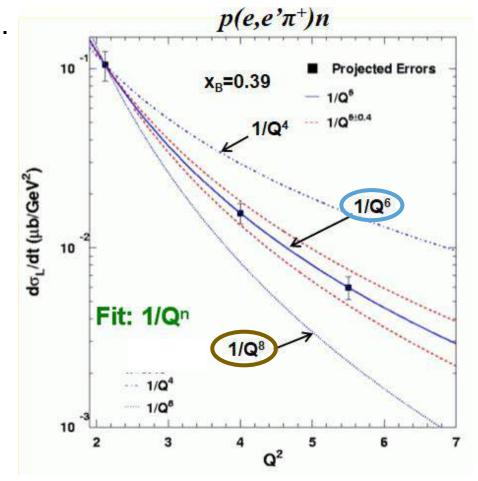
Experiment Goals: Extraction of F_{π}


- Indirectly measure F_{π} using the "pion cloud" of proton via pion electroproduction $p(e, e'\pi^+)n$
- \square Low Q^2 experimental data (Run period 1) already taken in 2019
 - Extract the F_{π} at $Q^2 = 0.38 \, GeV^2 \, \& \, 0.42 \, GeV^2$
 - Do comparison of results with already published CERN results.

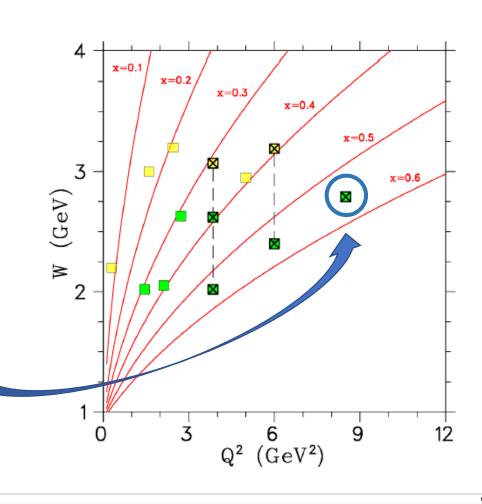
- Precise F_{π} extraction up to $Q^2 = 6 \ GeV^2$
- Highest possible F_{π} extraction at $Q^2 = 8.5 \, \overline{GeV^2}$
- \square High Q^2 experiment consists of two run periods;
 - Run period 2 (low epsilon) already completed (05-Sep-2021 07-Feb-2022)
 - Run period 3 (high epsilon) is in progress (expected 06-June-2022 -10-Aug-2022)


t-channel process

Experiment Goals: Study the Hard-Soft Factorization Regime

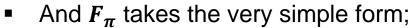

- Study the Hard-Soft Factorization Regime:
- Non-perturbative (soft) physics is represented by GPDs
- Factorized from perturbative QCD (hard) processes for longitudinal photons
- Measurement of GPDs require confirmation of the applicability of hard-soft QCD factorization mechanism at intermediate Q^2
- Need to determine region of validity of hard exclusive reaction mechanism, as GPDs can only be extracted where factorization applies
- Separated $p(e, e'\pi^+)n$ cross sections vs Q^2 at fixed t to investigate reaction mechanism towards 3D imaging (GPDs) studies
- Perform exclusive π^+/π^- ratios from 2H , yielding insight to hard—soft factorization at modest Q^2

Experiment Goals: Pion Scaling Study


- □ Scaling Study at fixed x = 0.31, 0.39, 0.55 as a function of Q^2 .
- QCD counting rules predict $1/Q^n$ dependence of $p(e, e'\pi^+)n$ cross sections in Hard Scattering Regime
- σ_L , to leading order, scales as $1/Q^6$
- σ_T scales as $1/Q^8$
- At large Q^2 , $\sigma_L >> \sigma_T$
- Study hard-soft factorization for GPD extraction
 - If σ_L becomes large, would allow for leading twist GPD study
 - If σ_T becomes large, could allow for transversity GPD study

Optimized W vs Q^2 Settings for F_{π} Extraction and Pion Scaling Study

- Two separate experiments
 - Spokespersons managed to arrange both experiments into one
- Yellow points represents the Pion Scaling Study
- Green points represents the Pion Form Factor Study
- Vertical black dashed lines scan $-t_{min}$ at fixed Q^2
- Points marked with an 'x' are instrumental in higher Q^2 , F_{π} extraction
 - $-Q^2 = 8.5 \,GeV^2$ is highest achievable extraction at JLab
- Red lines allow for $1/Q^n$ scaling study at fixed x = 0.31, 0.39, 0.55

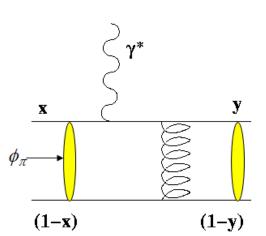

Pion Form Factor

- Form Factor describes transverse spatial position of partons within hadrons
- At very large Q^2 , pion form factor (F_{π}) can be calculated using pQCD;

$$F_{\pi}(Q^2) = \frac{4}{3}\pi\alpha_s \int_0^1 dx dy \frac{2}{3} \frac{1}{xyQ^2} \phi(x)\phi(y)$$

• At asymptotically high Q^2 , the pion distribution amplitude becomes;

$$\phi_{\pi}(x) \mathop{\to}_{Q^2 \to \infty} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)$$

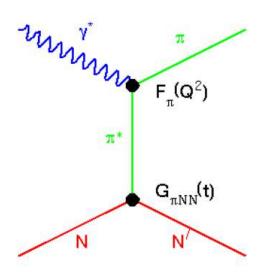


$$Q^2F_{\pi}(Q^2) \rightarrow 16\pi\alpha_s(Q^2)f_{\pi}^2$$
 $(Q^2 \rightarrow \infty)$

[G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359].

- Q^2F_{π} should behave like $\alpha_s(Q^2)$ even for moderately large Q^2
- Pion form factor seems to be best tool for experimental study of nature of the quarkgluon coupling constant renormalization

[A.V. Radyushkin, JINR 1977, arXiv:hep-ph/0410276]



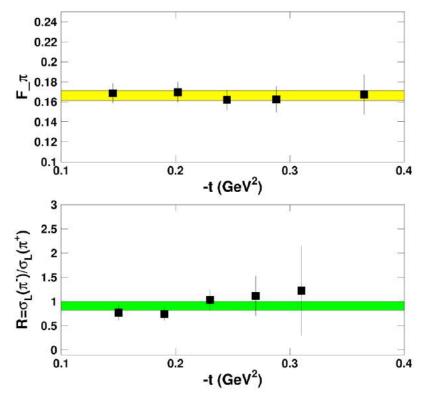
Pion Form Factor Measurement

- Above $Q^2 > 0.3 \text{GeV}^2$, F_{π} is measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$
- At small -t, the pion pole process dominates the longitudinal cross section σ_L
- Pion (π) targets not possible due to short lifetime
 - Scatter of virtual pion cloud of nucleon instead
- Indirect measurement Form factor extraction requires a model
- As an illustration of how σ_L connects to $F_{\pi}^2(Q^2, t)$, we consider a simple Born Term Model;

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

- In reality, we use Regge Model such as VGL-model for $F_{\pi}^{2}(Q^{2}, t)$ extraction.
 - Critical to confirm the validity of the model used to extract the $F_{\pi}^{2}(Q^{2},t)$!





Validation of F_{π} Extractions

- Validation of F_{π} extractions at highest possible Q^2
 - Extract F_{π} at fixed Q^2 , scanning -t
 - $-F_{\pi}$ should be independent -t

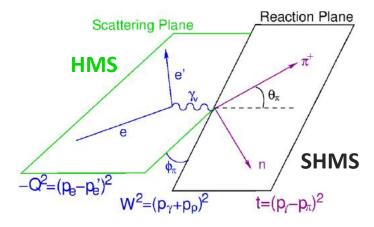
- Check dominance of t-channel process
 - Examine ratio of σ_L for $d(e, e'\pi^-)pp_{sp}/d(e, e'\pi^+)nn_{sp}$
 - Tests to be repeated at $Q^2 = 1.60, 3.85, 6.0 \, GeV^2$
- But determining σ_L is challenging

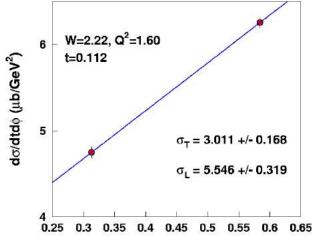
L/T Separated Pion Cross Sections

- Rosenbluth Separation technique is used to separate σ_L and σ_T terms
- In non-parallel kinematics (i.e., $\theta_{\pi} \neq 0$), the Physical cross section for the electroproduction process is given by;

$$2\pi \frac{d^2\sigma}{dt\,d\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

Where;


$$\epsilon = \left[1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \cdot tan^2 \frac{\theta_{e'}}{2}\right]^{-1}$$


• $^{1}/_{\Delta\epsilon}$ error amplification in σ_{L}

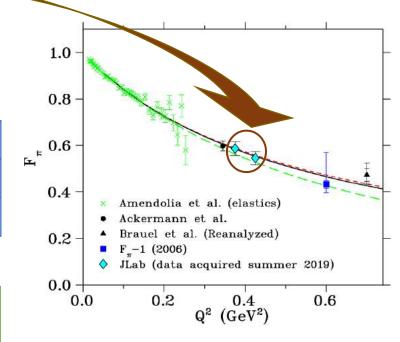
$$\frac{\Delta \sigma_L}{\sigma_L} = \frac{1}{\epsilon_1 - \epsilon_2} \frac{1}{\sigma_L} \sqrt{\Delta \sigma_1^2 + \Delta \sigma_2^2}$$

Where " $\sigma_1 = \sigma_T + \epsilon_1 \sigma_L$ " and " $\sigma_2 = \sigma_T + \epsilon_2 \sigma_L$ "

 Careful attention must be paid to spectrometer acceptance, kinematics, efficiencies, ...

Pion-LT Summer 2019 Run Period

- Run period completed from June 2019 to August 2019
- Data acquired for the three values of ϵ
- Beam Energy : 2.8 GeV


Q^2	W	Target & SHMS polarity			
0.38	2.20	LH+			
0.43	2.20	LH+			

Beam Energy: 3.7 GeV

Q^2	W	Target & SHMS polarity
0.38	2.20	LH+
0.43	2.20	LH+
1.45	2.20	LH+

Beam Energy: 4.6 GeV

Q^2	W	Target & SHMS polarity
0.38	2.20	LH+
0.43	2.20	LH+
2.12	2.20	LH+

New data are at significantly closer to pion pole than Ackermann data

Muhammad Junaid, Hall C Collaboration Meeting

Beam Energy: 9.2 GeV (5 pass @ 1.82 GeV/pass)

Q^2	W	Target & SHMS polarity
1.60	3.08	LH+, LD+, LD-
6.00	3.19	LH+
8.50	2.79	LH+

Beam Energy: 9.9 GeV (5 pass @ 1.92 GeV/pass)

Q^2	W	Target & SHMS polarity
1.60	3.08	LH+
3.85	3.07	LH+
5.00	2.95	LH+
6.00	3.19	LH+

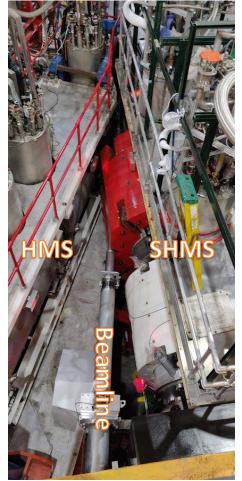
Beam Energy: 6.0 GeV (3 pass @ 1.96 GeV/pass)

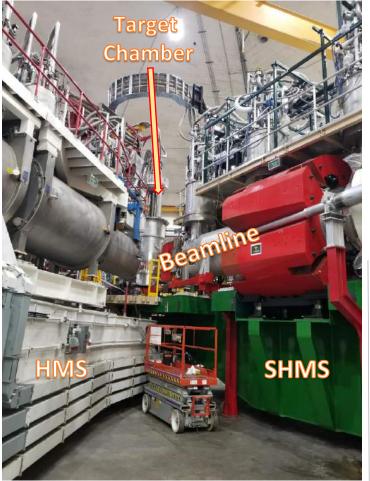
Q^2	W	Target & SHMS polarity
3.85	2.02	LH+

Beam Energy: 8.0 GeV (4 pass @ 1.96 GeV/pass)

Q^2	W	Target & SHMS polarity
2.45	3.20	LH+
3.85	3.07	LH+, LD+, LD-
5.00	2.95	LH+
6.00	2.40	LH+, LD+, LD-

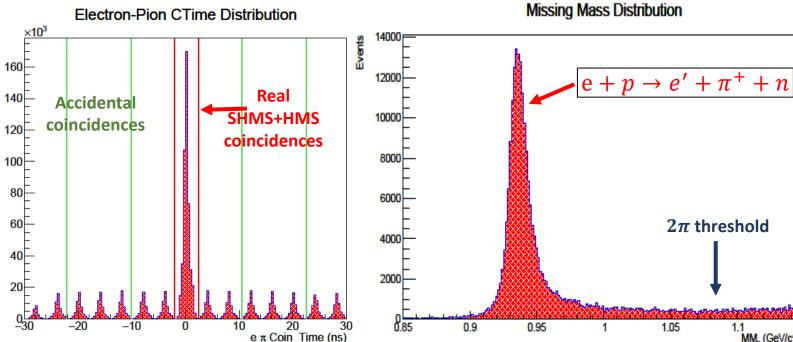
 Run period completed from September 2021 to February 2022.


- Fall 2021 Completed Kinematics;
- $\theta_{\pi q}$ settings are limited;
 - Right-angle setting not always possible with hard limit of 5.50° for SHMS
 - $Q^2 = 8.50$ limited to central angle due to event rate
- Each setting is one part of the data needed for an L/T separation
 - Need AT LEAST two beam energies
 - Some settings have 3 ϵ points


Q^2	W	x	Run Type	θ_q	$\theta_{\pi q}$	ϵ	E_e
1.60	3.08	0.160	LH+, LD+, LD-	8.26	$-2, 0, +2^{\circ}$	high	9.177
1.60	3.08	0.160	LH+	8.69	$-2, 0, +2^{\circ}$	high-2	9.876
2.45	3.20	0.21	LH+	6.16	$0, +2^{\circ}$	low	7.937
3.85	2.02	0.55	LH+	15.79	$-2, 0, +2^{\circ}$	low	5.986
3.85	3.07	0.31	LH+	9.29	$-2, 0, +2^{\circ}$	middle-2	9.876
3.85	3.07	0.31	LH+,LD+,LD-	6.39	$-0.89, 0, +2^{\circ}$	low	7.937
5.00	2.95	0.39	LH+	9.73	$-2, 0, +2^{\circ}$	middle	9.876
5.00	2.95	0.39	LH+	6.17	$0, +2^{\circ}$	low	7.937
6.00	3.19	0.39	LH+	5.06	$+0.44, +2^{\circ}$	low	9.177
6.00	3.19	0.39	LH+	6.6	$0, +2^{\circ}$	middle	9.876
6.00	2.40	0.55	LH+,LD+,LD-	11.12	$-2, 0, +2^{\circ}$	low	7.937
8.50	2.79	0.55	LH+	5.44	$+0.06^{\circ}$	low	9.177

Hall C Extremes in this Experiment

- This experiment has in large part driven the forward angle requirements of SHMS and HMS
- The minimum opening angle between SHMS and HMS was, **18**. **00**°, was reached for this experiment.
 - HMS moved to 11.01° deg and SHMS moved 18.00° away at **6.99°**
- In this experiment, we pushed **SHMS to 5.50°**.
 - Several kinematic settings used the SHMS at its minimum angle of 5.50°
- Thank you to the Hall C scientific and technical staff members who made all of this possible

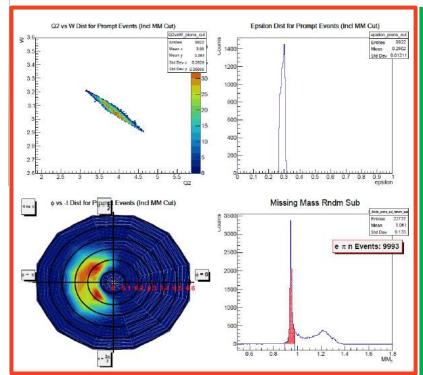


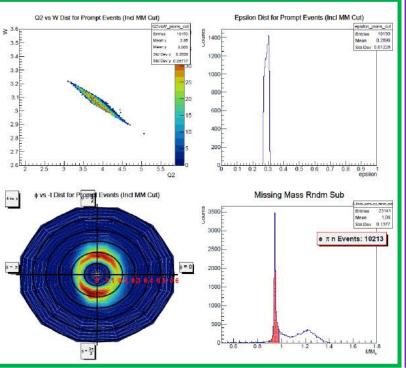
- $p(e, e'\pi^+)n$ Event Selection;
- Coincidence measurement between charged pions in SHMS and electrons in HMS
- Easy to isolate exclusive channel
- Excellent particle identification.
- Continuous beam minimizes accidental coincidences
- Missing mass resolution easily excludes 2-pion contributions

Pion-LT Experiment E12-19-006 Data

$$Q^2 = 1.60$$
, $W = 3.08$, $x = 0.157$, $\epsilon = 0.685$ $E_{beam} = 9.177~GeV$, $P_{HMS} = -3.738~GeV/c$, $\theta_{HMS} = 12.40^\circ$ $P_{SHMS} = +5.422~GeV/c$, $\theta_{SHMS} = 10.26^\circ(Left)$

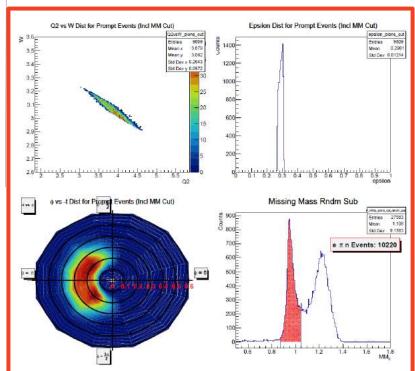
Electron-Pion CTime Distribution

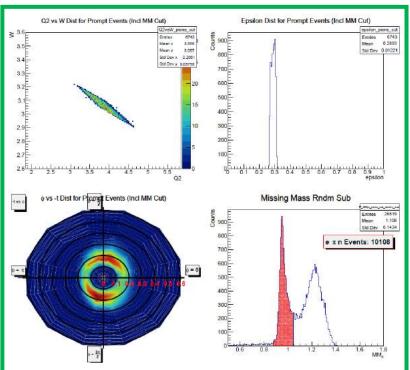


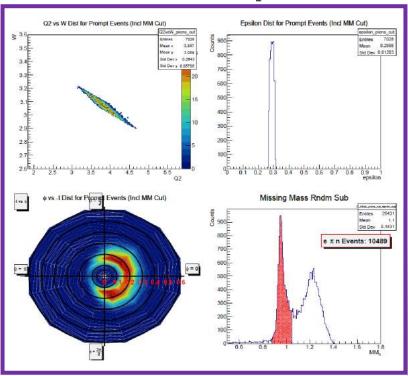

MM_L (GeV/c²)


 2π threshold

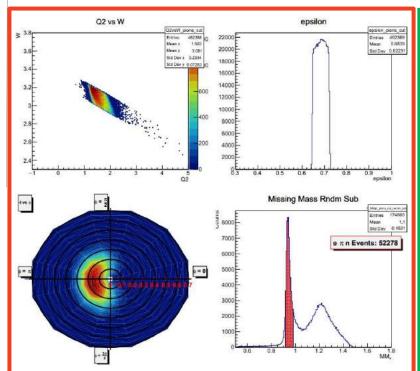
 $Q^2 = 3.85$, W = 3.07, x = 0.31 for $p(e, e'\pi^+)n$

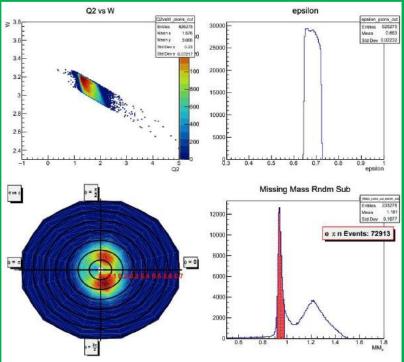

 $\theta_{SHMS} = 8.39^{\circ}$ (Left)

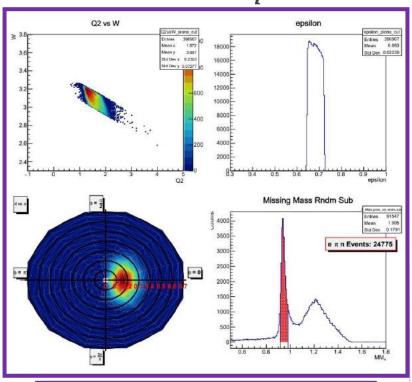

 $\theta_{SHMS} = 6.39^{\circ}$ (Center)


 $\theta_{SHMS} = 5.50^{\circ} (Right)$

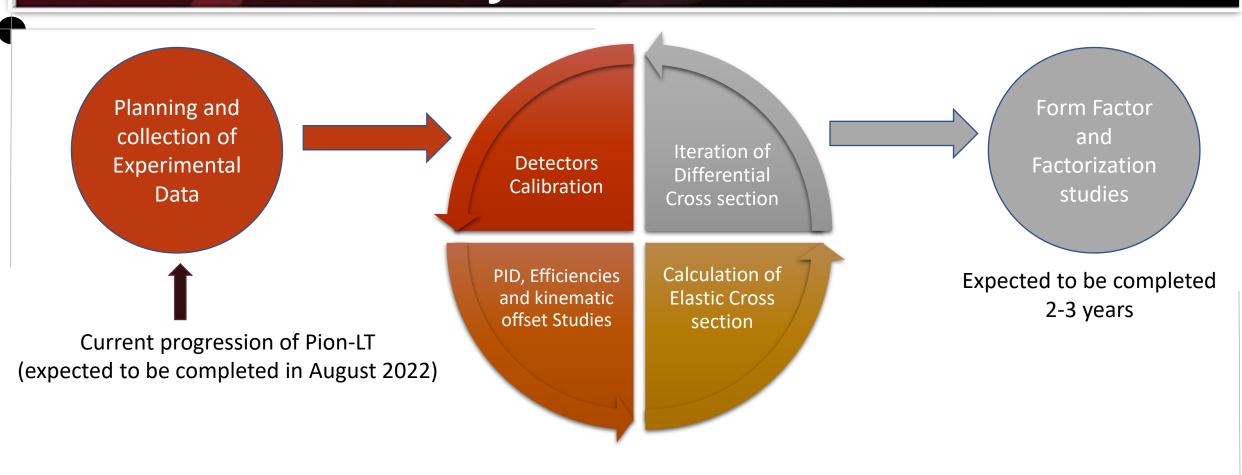
 $Q^2 = 3.85$, W = 3.07, x = 0.31 for $d(e, e'\pi^+)nn_{sp}$


 $\theta_{SHMS} = 8.39^{\circ}$ (Left)


 $\theta_{SHMS} = 6.39^{\circ}$ (Center)


 $\theta_{SHMS} = 5.50^{\circ} (Right)$

 $Q^2 = 1.60$, W = 3.08, x = 0.16 for $d(e, e'\pi^-)pp_{sp}$


 $\theta_{SHMS} = 10.26^{\circ}$ (Left)

 $\theta_{SHMS} = 8.26^{\circ}$ (Center)

 $\theta_{SHMS} = 6.26^{\circ} (Right)$

Analysis Flow Chart

Pion-LT Summer 2022 Run Period

Beam Energy : 10.6 GeV

Q^2	W	Target & SHMS polarity
2.45	3.20	LH+
2.73	2.63	LH+
3.85	2.02	LH+
3.85	2.62	LH+, LD+, LD-
3.85	3.07	LH+, LD+, LD-
5.00	2.95	LH+
6.00	2.40	LH+, LD+, LD-
6.00	3.19	LH+
8.50	2.79	LH+

Beam Energy: 8.5 GeV

Q^2	W	Target & SHMS polarity
2.12	2.05	LH+
2.45	3.20	LH+
3.85	3.07	LH+

Beam Energy : 6.4 GeV

Q^2	W	Target & SHMS polarity
1.45	2.02	LH+
1.60	3.08	LH+, LD+, LD-
2.73	2.63	LH+
3.85	2.62	LH+, LD+, LD-

Pion-LT Summer 2022 Run Period

- Pion-LT Summer 2022 run period 3 (high epsilon) is in progress and will continue until August 2022
- High- ϵ data is necessary for L/T separation and for experiment goals to be met require high- ϵ
- Further data taken at same beam energies will not allow for an LT separation
- Higher beam energy allows for larger $\Delta\epsilon$
- Experiment results are very sensitive to $\Delta\epsilon$
- Range of $\Delta \epsilon$ is from **0.22** to **0.49**

Q^2	W	x	Run Type	ϵ
1.45	2.02	0.312	LH+	High
1.60	3.08	0.160	LH+, LD+, LD-	Low
2.12	2.05	0.390	LH+	High
2.45	3.20	0.210	LH+	High
2.73	2.63	0.311	LH+	Low, high
3.85	2.02	0.550	LH+	High
3.85	2.62	0.392	LH+, LD+, LD-	Low, high
3.85	3.07	0.310	LH+	High
5.00	2.95	0.390	LH+	High
6.00	3.19	0.390	LH+	High
6.00	2.40	0.550	LH+, LD+, LD-	High
8.50	2.79	0.550	LH+	High

23

Summary

- E12–19–006 (12 GeV Flagship Experiment) is expected to provide the definitive $p(e, e'\pi^+)n$ L/T–separation data set and will remain important for decades to come
- $F_{\pi}-1$ and $F_{\pi}-2$ experiments were very productive, and are among JLab's top cited results (top 4 listed):
 - Volmer et al, PRL 2001 ($F_{\pi}-1$) 232 citations
 - Horn et al, PRL 2006 (F_{π} 2) 207 citations
 - Tadevosyan et al, PRC 2007 ($F_{\pi}-1$) 234 citations
 - Huber et al, PRC 2008 ($F_{\pi}-2$) 230 citations
- Data collection for fall 2021 was very successful
- Thank you to the Hall C staff/users and our collaborators!
- Pion-LT Summer 2022 run period 3 (high epsilon) is in progress and will continue until August 2022
- WE REALLY NEED YOUR ASSISTANCE TO MAKE THE EXPERIMENT A SUCCESS!!
- Summer 2022: 398 person shifts needed @ 2 workers/shift
- Shift sign up now open at:

https://misportal.jlab.org/mis/apps/physics/shiftSchedule/index.cfm?experimentRunId=HALLC-PIONLT-2022

THANKS

This research is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) FRN: SAPIN-2021-00026