KaonLT (E12-09-011) Analysis Update

Vijay Kumar University of Regina

Hall A/C Summer Collaboration Meeting June 16-17, 2022

Outline

- Collaboration information
- Kaon LT experiment and its studies
- Rosenbluth separation overview
- The meson wave function (form factor)
- Analysis updates
- Summary and future perspectives

Collaboration

Spokespersons:

Garth Huber, Tanja Horn and Pete Markowitz.

Graduate Students (students analyzing data):

Vijay Kumar, Richard Trotta and Ali Usman.

Vijay Kumar

Richard Totta

Ali Usman

Key Members:

Stephen Kay, Muhammad Junaid, Love Preet, Nathan Heinrich Vladimir Berdnikov, and Petr Stepanov.

Kaon LT experiment (E12-09-011)

- Kaon LT experiment was conducted in Hall C at Jefferson Lab over fall 2018 and spring 2019.
 - It is an exclusive reaction system experiment. The experimental data were collected above the resonance region of the proton.
 - The experiment is to perform studies of the high precision separation cross-section terms, σ_L , σ_T , $\sigma_{LT} \& \sigma_{TT}$ of the kaon electroproduction.
 - Further studies for the "soft" and "hard" QCD factorization will be carried out.
 - The kaon electromagnetic form factor will be extracted if study shows that the kaon pole dominates $\sigma_{\rm L}$.
- The reaction system of the experiment is,

or

$$e + p \rightarrow e' + K^+ + \Lambda$$

 $M_{\Lambda} = 1115.68 \ MeV^2/c^2$
 $e + p \rightarrow e' + K^+ + \Sigma^0$
 $M_{\Sigma^0} = 1192.64 \ MeV^2/c^2$

Rosenbluth separation overview (simple version)

- To separate out the cross-section terms, we will utilize the Rosenbluth separation technique.
 - Measure the cross-section for at least two values of ϵ at fixed Q², W and -t.
 - The measured cross-section at two values of $\boldsymbol{\epsilon}$ is then fitted to separate out the $\boldsymbol{\sigma}_{L}$, $\boldsymbol{\sigma}_{T}$, $\boldsymbol{\sigma}_{LT} \& \boldsymbol{\sigma}_{TT}$ cross-section terms.
- In parallel kinematics, $\theta_K = 0(\theta_K w.r.t\vec{q}).$
 - The σ_L and σ_T are the only cross-section terms that contribute to the kaon electroproduction cross-section.
 - The mathematical form is simple but it requires uniform detector acceptance.

 $2\pi \frac{d^2 \sigma}{dt d\phi} = \varepsilon \frac{d \sigma_L}{dt} + \frac{d \sigma_T}{dt}$ Virtual-photon polarization:

$$\varepsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\theta_{e'}}{2}\right)^2$$

16/06/2022

Rosenbluth separation overview (full version)

• In non-parallel kinematics, $\theta_K \neq 0(\theta_K w.r.t\vec{q}).$

• The cross-section at two values of ε is simultaneously fitted with a four variables function to determine all of the four cross-sections, σ_L , σ_T , σ_T , σ_T , σ_T .

$$2\pi \frac{d^2 \sigma}{dt d\phi} = \varepsilon \frac{d \sigma_L}{dt} + \frac{d \sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d \sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d \sigma_{TT}}{dt} \cos 2\phi$$

We have acquired the data for parallel and nonparallel kinematics settings.

 $Q^2 = 3.0 \text{ GeV}^2/c^2$

$$\theta_{SHMS} = 12.42^{\circ} \qquad \theta_{SHMS} = 9.42^{\circ} \qquad \theta_{SHMS} = 6.65^{\circ}$$

W = 3.14 GeV

 $E_{h} = 10.6 \text{ GeV}$

Vijay Kumar (University of Regina)

e(p, e'K⁺) Λ or Σ^{0} L/T separation studies (QCD factorization)

The Q² dependence studies at constant x_B are important to;

- Test the factorization theorem and understand the dynamic effects in Q² and -t kinematics.
- Understand the 'soft' and 'hard' contributions to the kaon wave function.
- One of the predictions, $\sigma_{L} \sim 1/Q^{6}$ and $\sigma_{T} \sim 1/Q^{8}$ at fixed x_{B} .
- GeV data analysis had made an effort to understand the QCD factorization test.
- We have acquired the data for the scaling studies (QCD factorization) at $x_{R} = 0.40$ and 0.25.

e(p, e'K⁺) Λ or Σ^{0} L/T separation studies (test for the kaon pole)

The -t dependence studies at constant Q² are pivotal to;

- Test the kaon pole dominates σ_L at smallest -t. This test is required to extract the kaon form factor from the σ_L . This test has never been done before.
- The kaon pole is further away than pion from the kinematically allowed region.

The meson wave function (form factor)

- The electromagnetic form factor is an important physical observable connected directly to the internal structure of mesons.
 - In quantum theory, the kaon form factor is the overlap of integral over the wave functions of the initial and final state kaon,

$$F_K(Q^2) = \int \phi_K^*(p)\phi_K(p+q)dp.$$

The meson wave function can be separated into two regions.

- $\Phi_{\kappa}^{\text{soft}}$, (k < k₀) low momentum contributions which can not be treated in pQCD.
- Φ_{κ}^{hard} , hard tail can be treated in pQCD.

π and K form factors at very low Q² (elastic scattering)

- $F_{\pi}(Q^2)$ and $F_{\kappa}(Q^2)$ are known at very low Q^2 which were measured using π^-/K^- beams scattered elastically from atomic electrons.
 - π^- of 300 GeV, data were collected up to $Q^2 = 0.28 \text{ GeV}^2$.
 - K⁻ of 250 GeV, data were collected up to Q²=0.13 GeV².
- These measurements were used to determine the charge radius of the π and K.
 - The slope of the fitting function at $Q^2 = 0$ provides the charge radius.
 - $< r^2 > = -(6dF/dQ^2)_{Q^2 = 0}$.
 - π charge radius $< r^2 > 1/2 = 0.657 \pm 0.012$ fm.
 - K charge radius $< r^2 > = 0.340 \pm 0.050 \text{ fm}^2$.

π and K form factors at high Q^2

At high Q², direct scattering is not achievable.

- This requires very high energy π/K beams. For example, Q² = 1 GeV² requires ~ 1 TeV π .
- To access the form factors at high Q², we must employ an alternative method.
 - "Virtual cloud" of the π and K inside the proton makes the measurements possible.
 - This attempt has been made at the 6 GeV era of JLab and a few other experimental facilities earlier.

In Born term model, the form factor appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_K^2)} g_{K\Lambda N}^2(t) F_K^2(Q^2,t)$$

- In our measurements, we will not use the Born term model.
- The form factors are model dependent.

10.6, 4.9 and 3.8 GeV data acquired in fall 2018.

Richard: Analyzing kaon for 10.6, 8.2 and 6.2 GeV.	E _b (GeV)	Q ² (GeV ² /c ²)	W (GeV)	X _B	$\epsilon_{\rm High}^{}/\epsilon_{\rm Low}^{}$	Study Type
	10.6/8.2	5.5	3.02	0.40	0.53/0.18	scaling
	10.6/8.2	4.4	2.74	0.40	0.72/0.48	scaling
Ali: Analyzing pion from the kaon data for 10.6, 8.2 and 6.2 GeV.	10.6/8.2	3.0	3.14	0.25	0.67/0.39	both
	10.6/6.2	3.0	2.32	0.40	0.88/0.57	scaling
Vijay: Analyzing kaon for 3.8 and 4.9 GeV.	10.6/6.2	2.115	2.95	0.21	0.79/0.25	both
	4.9/3.8	0.5	2.40	0.09	0.70/0.45	FF

8.2 and 6.2 GeV data acquired in winter 2019.

Analysis update ('Heep', ${}^{1}H(e, e'p)$, Analysis)

We did check the first round of the elastics cross section to understand the data.

- The plots in this talk are $E_b = 3.9 \text{ GeV}$, $P_{SHMS} = 2.583 \text{ GeV}$, $P_{HMS} = 2.026 \text{ GeV}$, $\theta_{SHMS} = 29.305^{\circ}$ & $\theta_{HMS} = 38.605^{\circ}$ setting. These plots are the preliminary comparison of data and MC.
- Reconstructed proton's vertical (xptar) and horizontal (yptar) angles at the target.

Analysis update ('Heep', ${}^{1}H(e,e'p)$, Analysis)

Reconstructed electron's vertical (xptar) and horizontal (yptar) angles at the target.

Analysis update ('Heep', ${}^{1}H(e, e'p)$, Analysis)

Reconstructed the SHMS and HMS deltas.

Analysis update ('Heep', ${}^{1}H(e, e'p)$, Analysis, Offsets)

- The preliminary investigation of the offsets at 3.8 GeV data has been completed with the help of the 'heepcheck' program.
 - -0.13% HMS central momentum offset is determined.
 - Effect of -0.13% HMS central momentum offset on missing momentum.

Analysis update ('Heep', ${}^{1}H(e, e'p)$, Analysis, Offsets)

• Effect of -0.13% HMS central momentum offset on missing energy.

Analysis update ('Heep', ${}^{1}H(e, e'p)$, Analysis, Offsets)

• Effect of -0.13% HMS central momentum offset on momentum's z-component.

- The offsets study is still in progress, we are working to optimize the offsets and better understand them for the kaon electroproduction analysis.
- The first round of the heep (elastic) coin/singles study at 4.9 GeV data is also completed.

- We have completed the first round of the physics analysis (comparison between the experimental data and MC) of the kaon electroproduction data.
 - The plots in this talk are $E_b = 3.9 \text{ GeV}$, $P_{SHMS} = 2.583 \text{ GeV}$, $P_{HMS} = 0.968 \text{ GeV}$, $\theta_{SHMS} = 6.79^{\circ}$ & $\theta_{HMS} = 21.14^{\circ}$ setting. These plots are the preliminary comparison of data and MC.
 - The comparison is made for A channel, $e+p
 ightarrow e'+K^++\Lambda$.
 - The offsets from the heep analysis are NOT applied yet. Work is still in progress.
- Comparison of simulated and data MMK for A channel.

Reconstructed kaon's vertical (xptar) and horizontal (yptar) angels at the target.

Analysis update ('Physics',
$$e + p \rightarrow e' + K^+ + \Lambda$$
, Analysis)

Reconstructed electron's vertical (xptar) and horizontal (yptar) angels at the target.

Reconstructed the SHMS and HMS deltas.

Comparison of data and MC for the physics quantities Q^2 and ϵ .

Comparison of data and MC for the physics quantities W and t.

The first round of the physics analysis at 4.9 GeV data (comparison between the experimental data and MC) is also completed.

Systematics Study

Update from Ali Usman and Richard Trotta.

□ As discussed earlier, L/T separation requires data at two beam energies.

- Very careful attention is needed to understand the spectrometer acceptance, kinematics, detector efficiency, etc.
- Understanding systematics is challenging as Kaon-LT data were taken under different detector and trigger rates at low and high ε.
- □ A dynamic mechanism has been developed to understand systematics (efficiencies, live times etc) and correlations.
 - This involves new ReportFiles and efficiency scripts.

Live Time Studies

Update from Ali Usman and Richard Trotta.

 Live times can be calculated using different sources (e.g. EDTM, CPULT etc).

EDTM Live Time

Accepted EDTM Triggers Total EDTM Scalers

CPU Live Time

Accepted COIN Triggers Total COIN Scalers

- Both CPU Live Time and EDTM Live Time show consistent trends.
- □ As expected, live times decrease with increase in rate.

Detector Efficiency Studies

Update from Ali Usman and Richard Trotta.

- Detector efficiency studies are still in progress.
- HMS hodoscopes are more efficient as compared to SHMS due to high rates and quartz bar in SHMS.
- Aerogel is highly efficient and therefore will be critical detector for *Kaon-Pion* separation.

Summary and future perspectives

- The preliminary heep (elastic) coin/single study at 3.9 and 4.9 GeV has been completed.
- The preliminary investigation of the offsets in the heep study at 3.9 and 4.9 GeV data has been performed.
- The preliminary comparison study (without the offsets) of the ∧ channel at 3.9 and 4.9 GeV data has been completed.
- Some of the efficiency studies were performed to better understand the detectors used in the experiment.
- An effort has been made to understand the systematic uncertainties in the experiment.
- We will start the p(e, e'K⁺)∧ L/T/LT/TT separation cross-sections studies at various Q² settings after having a proper understanding on the heep study (most probably in fall 2022).
- In conclusion, the final data analysis is in progress, the analysis is for the high precision L/T/LT/TT separation cross-sections studies which is a complicated study.

Thank You!

