

University of New Hampshire Nuclear & Particle Physics Group

A Measurement of the Proton's Spin Structure Functions in the Strong-QCD Regime 2022 Summer Status Update

David Ruth

Hall A Collaboration Meeting

June 16th, 2022

Acknowledgements

g2p Collaboration

D. Ruth,¹ R. Zielinski,¹ C. Gu,² M. Allada (Cummings),³ T. Badman,¹ M. Huang,⁴ J. Liu,² P. Zhu,⁵ K. Allada,⁶ J. Zhang,⁷ A. Camsonne,⁷ J.-P. Chen,⁷ K. Slifer,¹ K. Aniol,⁸ J. Annand,⁹ J. Arrington,^{10,11} T. Averett,³ H. Baghdasaryan,² V. Bellini,¹² W. Boeglin,¹³ J. Brock,⁷ C. Carlin,⁷ C. Chen,¹⁴ E. Cisbani,¹⁵ D. Crabb,² A. Daniel,² D. Day,² R. Duve,² L. El Fassi,^{16,17} M. Friedman,¹⁸ E. Fuchey,¹⁹ H. Gao,⁴ R. Gilman,¹⁶ S. Glamazdin,²⁰ P. Gueye,¹⁴ M. Hafez,²¹ Y. Han,¹⁴ O. Hansen,⁷ M. Hashemi Shabestari,² O. Hen,⁶ D. Higinbotham,⁷ T. Horn,²² S. Iqbal,⁸ E. Jensen,²³ H. Kang,²⁴ C. D. Keith,⁷ A. Kelleher,⁶ D. Keller,² H. Khanal,¹³ I. Korover,²⁵ G. Kumbartzki,¹⁶ W. Li,²⁶ J. Lichtenstadt,²⁵ R. Lindgren,² E. Long,¹ S. Malace,²⁷ P. Markowitz,¹³ J. Maxwell,^{1,7} D. M. Meekins,⁷ Z. E. Meziani,¹⁹ C. McLean,³ R. Michaels,⁷ M. Mihovilovič,^{28,29} N. Muangma,⁶ C. Munoz Camacho,³⁰ J. Musson,⁷ K. Myers,¹⁶ Y. Oh,²⁴ M. Pannunzio Carmignotto,²² C. Perdrisat,³ S. Phillips,¹ E. Piasetzky,²⁵ J. Pierce,^{7,31} V. Punjabi,³² Y. Qiang,⁷ P. E. Reimer,¹⁰ Y. Roblin,⁷ G. Ron,¹⁸ O. Rondon,² G. Russo,¹² K. Saenboonruang,² B. Sawatzky,⁷ A. Shahinyan,³³ R. Shneor,²⁵ S. Širca,^{28,29} J. Sjoegren,⁹ P. Solvignon-Slifer,¹ N. Sparveris,¹⁹ V. Sulkosky,⁶ F. Wesselmann,³⁴ W. Yan,⁵ H. Yang,³⁵ H. Yao,³ Z. Ye,² M. Yurov,² Y. Zhang,¹⁶ Y. X. Zhao,⁵ and X. Zheng² (The Jefferson Lab Hall A g2p Collaboration)

Acknowledgements

g2p Analysis Team

Spokespeople:

J.P. Chen Karl Slifer[†] Alexandre Camsonne Don Crabb

Post-Docs:

Kalyan Allada James Maxwell Vince Sulkosky Jixie Zhang

Graduate Students:

Ryan Zielinski Chao Gu Toby Badman Melissa Cummings Min Huang Jie Liu Pengjia Zhu

+: Corresponding Author, Email: Karl.Slifer@unh.edu

- 1. Experiment Background
 - First low Q² measurement of transverse proton spin structure
 - Dynamic Nuclear Polarized (DNP) Target
 - Model Cross Section & Experimental Asymmetry
- 2. Publication Progress

- g₂ structure function
- δ_{LT} Transverse-Longitudinal Spin Polarizability
- d₂ Matrix Element
- Other results in preparation: g_1 , Γ_2

Motivation:

Measure a fundamental spin observable (g_2) in the region 0.02 < Q^2 < 0.20 GeV² for the first time

$$\frac{d^2\sigma^{\pm}}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\alpha F_1(x, Q^2) + \beta F_2(x, Q^2) \pm \gamma g_1(x, Q^2) \pm \delta g_2(x, Q^2) \right]$$

$g_{\scriptscriptstyle 1}$ and $g_{\scriptscriptstyle 2}$ related to spin distribution

- Both structure functions measured over broad kinematic
 range for neutron: Small-Angle GDH, E94010 at Jefferson Lab
- g1 measured for proton: EG4, EG1b, RSS, SANE
- No g2 data in the very low Q2 region for the proton!
- Neutron Moment δ_{LT} disagrees with χPT in low Q² region, important to test for the proton
- Low Q² is difficult:
 - Electrons strongly influenced by target field
 - Strong kinematic dependence on observables
- Low Q² is useful:
 - Test predictions of Chiral Perturbation Theory (χPT)
 - Test sum rules and measure moments of g_2

Recent Spin Structure Studies

- EG4: Published in Nature Physics in April 2021
 - Low+Medium Q² measurement of g₁ and longitudinal moments for Proton
- Small-Angle GDH: Published in Nature Physics in May 2021
 - Low Q² measurement of g₁ and g₂ for Neutron
- New χPT Calculations: Bernard et. al calculation in 2013 gave closer agreement to results of E94010
- Alarcon et. al calculation has been updated several times, most recently in 2020
- These calculations disagree at low Q² for the proton, showing that there are unanswered questions about QCD in the chiral domain

V. Sulkosky et al. Nature Physics 17, 687-692

Hall A Experimental Setup:

Polarized Protons Created with Dynamic Nuclear Polarization (DNP)

Creating initial polarization:

- Align spins in large B and low T
 - 5.0 T/2.5 T (a) 1 K $P_{\text{TE}} = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} = \frac{e^{\frac{\mu B}{kT}} - e^{\frac{-\mu B}{kT}}}{e^{\frac{\mu B}{kT}} + e^{\frac{-\mu B}{kT}}}$
- Large μ_e (~660 μ_p) creates large electron polarization (~99% at 5T/1K)

Enhancing initial polarization:

- Proton pol. much smaller (~0.5% 5T) at TE
- *ep* spin coupling and microwaves drive pol.
- Electrons relax much quicker than protons so polarization is sustained

g₂p Kinematic Coverage

Extracting Spin Structure by Looking at Cross Section Differences

$$\frac{d^2\sigma^{\uparrow\uparrow}}{dE'd\Omega} - \frac{d^2\sigma^{\downarrow\uparrow}}{dE'd\Omega} = \frac{4\alpha^2}{M\nu Q^2} \frac{E'}{E} \left[g_1(x,Q^2) \{E + E'\cos\theta\} - \frac{Q^2}{\nu} g_2(\nu,Q^2) \right]$$

Inclusive *polarized* cross sections

Parallel

$$\frac{d^2\sigma^{\uparrow\Rightarrow}}{dE'd\Omega} - \frac{d^2\sigma^{\downarrow\Rightarrow}}{dE'd\Omega} = \frac{4\alpha^2}{M\nu Q^2} \frac{E'^2}{E} \sin\theta \bigg[\nu g_1(x,Q^2) + 2Eg_2(\nu,Q^2)\bigg]$$

Perpendicular

$$\Delta \sigma_{\perp} = \frac{d^2 \sigma}{d\Omega dE'} (\downarrow \rightarrow -\uparrow \rightarrow) = 2 \cdot A_{\perp} \sigma_0 \qquad \qquad \text{From Model}$$
From Data
University of New Hampshire

Asymmetries

Measured Asymmetries:

 $Y_{\pm} = \frac{N_{\pm}}{LT_{\pm}Q_{\pm}}$

$$\begin{split} A^{\rm meas} &= \frac{Y_+ - Y_-}{Y_+ + Y_-}\,,\\ A^{\rm exp} &= \frac{1}{f\cdot P_t\cdot P_b}A^{\rm raw}\\ \end{split}$$
 dilution factor beam/target pol

Combine both HRS for best statistics!

Model Cross Section

- g2p data has good agreement with Bosted-Christy Model if a scaling of 1.15 is used
- We investigated this scaling in depth and determined its impact on the moments is less than 6%
- Transverse acceptance forces us to use model cross section
 - Bosted-Christy model in this region is based on E61, while g2p and onen1haf require a similar scaling factor
 - However all three experiments agree within error

0.25

Extraction & Model Scaling Factor Impact

$$g_{1}(x,Q^{2}) = K_{1} \left[\Delta \sigma_{\parallel} \left(1 + \frac{1}{K_{2}} \tan \frac{\theta}{2} \right) \right] + \frac{2g_{2}(x,Q^{2})}{K_{2}y} \tan \frac{\theta}{2}$$

$$g_{2}(x,Q^{2}) = \frac{K_{1}y}{2} \left[\Delta \sigma_{\perp} \left(K_{2} + \tan \frac{\theta}{2} \right) \right] - \frac{g_{1}(x,Q^{2})y}{2} \quad \text{Input from Hall B model}$$

Combination of data & Bosted model

- Scaling factor is on Bosted-Christy XS
- Hall B has different systematics
- Input term is a significant part of the SSF: ~30%
- Propagate through Bosted-Christy with scaling of 1.0 vs scaling of 1.15 for Longitudinal setting
- Everything else stays the same
- Form a 'zeroeth order' and 'second order' moment:

$$M_0 = \int g_1 dx \qquad \qquad M_2 = \int x^2 g_1 dx$$

- Zeroeth order difference is suppressed by Hall B term
- 2nd order difference is further suppressed by x² weighting
- Highest difference is ~6%

First publication under peer review!

- Our first paper, highlighting the transverse results, has been submitted to Nature <u>Physics</u>
- Paper is in peer review and we have received mostly very supportive comments from the reviewers, we are revising and hope to have an editor decision soon!
- Thank you to all who helped us prepare the draft for submission!

The Proton Spin Structure Function g_2 and Generalized Polarizabilities in the Strong QCD Regime

D. Ruth,¹ R. Zielinski,¹ C. Gu,² M. Allada (Cummings),³ T. Badman,¹ M. Huang,⁴ J. Liu,² P. Zhu,⁵ K. Allada,⁶ J. Zhang,⁷ A. Camsonne,⁷ J.-P. Chen,⁷ K. Slifer,¹ K. Aniol,⁸ J. Annand,⁹ J. Arrington,^{10,11} T. Averett,³ H. Baghdasaryan,² V. Bellini,¹² W. Boeglin,¹³ J. Brock,⁷ C. Carlin,⁷ C. Chen,¹⁴ E. Cisbani,¹⁵ D. Crabb,² A. Daniel,² D. Day,² R. Duve,² L. El Fassi,^{16,17} M. Friedman,¹⁸ E. Fuchey,¹⁹ H. Gao,⁴ D. Crabb,² A. Daniel,² D. Day,⁴ R. Duve,⁴ L. El Fassi,^{16,17} M. Friedman,¹⁸ E. Fuchey,¹⁹ H. Gao,⁴
R. Gilman,¹⁶ S. Glamazdin,²⁰ P. Gueye,¹⁴ M. Hafez,²¹ Y. Han,¹⁴ O. Hansen,⁷ M. Hashemi Shabestari,²
O. Hen,⁶ D. Higinbotham,⁷ T. Horn,²² S. Iqbal,⁸ E. Jensen,²³ H. Kan,² M. Keith,⁷ A. Kelleher,⁶
D. Keller,² H. Khanal,¹³ I. Korover,²⁵ G. Kumbartzki,¹⁶ W. 11,⁶ erchtosstaft,²⁵ R. Lindgren,²
E. Long,¹ S. Malace,²⁷ P. Markowitz,¹³ J. Maxwell,¹⁷ P. W. Vechus, Z. E. Meziani,¹⁹ C. McLean,³
R. Michaels,⁷ M. Mihovilovič,^{28,29} N. Muangma,⁶ Y. M. Vechus, Z. E. Meziani,¹⁹ C. McLean,³
R. Michaels,⁷ M. Mihovilovič,^{28,29} N. Muangma,⁶ Y. M. Vechus, Z. E. Meziani,¹⁹ Y. Oklesan,⁷ P. E. Reimer,¹⁰ Y. Roblin,⁷ G. Kor, Q. Rondon,² G. Russo,¹² K. Saenboonruang,² B. Sawatzky,⁷
A. Shahinyan,³³ R. Shneor,²⁵ S. Fin, 1, ⁴⁵ U. Speer,⁹ P. Solvignon-Silfer,¹ N. Sparveris,¹⁹ V. Sulkosky,⁶
F. Wesselmann,³⁴ W. Y. U., *T. Karel* H. Hao,³ Z. Ye,² M. Yurov,² Y. Zhang,¹⁶ Y. X. Zhao,⁵ and X. Zheng² (The Jefferson Lab Hall A g2p Collaboration) niversity of New Hampshire, Durham, New Hampshire 03824, USA ²University of Virginia, Charlottesville, Virginia 22903, USA ³ The College of William and Mary, Williamsburg, Virginia 23187, USA ⁴Duke University, Durham, NC 27708, USA ⁵University of Science and Technology, Hefei 230000, China ⁶Massachusetts Institute of Technology, Cambridge, MA 02139, USA ⁷ Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ⁸California State University, Los Angeles, Los Angeles, California 90032, USA ⁹Glasgow University, Glasgow G12 8QQ, Scotland ¹⁰Argonne National Laboratory, Argonne, Illinois 60439, USA

BIG THANKS TO:

- All the Hall A technical staff and accelerator operators
- Jose Manuel Alarcón
- Véronique Bernard
- Peter Bosted
- Eric Christy
- Alexandre Deur
- Evgeny Epelbaum
- Franziska Hagelstein
- Hermann Krebs
- Sebastian Kuhn
- Vadim Lensky
- Ulf-G.Meißner
- Vladimir Pascalutsa

University of New Hampshire

g₂ Structure Function Results

Transverse-Longitudinal Spin Polarizability $\delta_{LT} = \frac{1}{2}$

NH

First ever measurement of this quantity in this region!

New benchmark for χ PT and other calculations

University of New Hampshire

Transverse-Longitudinal $\delta_{LT} = \frac{16\alpha M^2}{Q^6} \int_0^{x_{th}} x^2 [g_1(x, Q^2) + g_2(x, Q^2)] dx$ Spin Polarizability

d2 Matrix Element

$$\overline{d_2} = \int_0^{x_{th}} x^2 [2 g_1(x, Q^2) + 3 g_2(x, Q^2)] dx$$

Data agrees well with Chiral Perturbation Theory calculation

Moment is an interesting way to probe quark-gluon correlations at low Q²

Other Results: g1 Structure Function

- Eo8-o27 data is consistent with previously published data from CLAS
- But with much better statistics!!
- Interesting differences near pion production threshold

Other Results: First Moment of $g_2(x, Q^2)$

$$\Gamma_2 = \int_0^{x_{th}} g_2(x, Q^2) dx$$

Q² (GeV²)	$\textbf{Lowest}\textbf{x}_{bj}$
0.13	0.059
0.09	0.043
0.05	0.029
0.02	0.010

Burkhardt-Cottingham Sum rule says this moment should be zero everywhere...

Unmeasured, low x part difficult to calculate accurately at low Q²

Conclusion

- The g2p experiment was a precision measurement of proton g2 in low Q2 region for the first time!
- Analysis is <u>complete</u>!
- First publication is <u>under peer review at Nature Physics!</u>
- Four more publications in preparation!

