

<u>Status of the nnA search</u> experiment with tritium target

Univ. of Tokyo K. Itabashi

Hall A & C Summer Meeting 2022 June 16, 2022

Contents

- Physics motivation (nnA state problem)
- *nn*Λ experiment (E12–17–003)
- Study of the Λn final state interaction

June 16, 2022

• Future Λ hypernuclear experiments

The nnΛ state puzzle

A $nn\Lambda$ is a Λ hypernucleus with no charge.

- Thought to be <u>unbound</u>
- Experimental result (GSI) → Bound state?? [1]

[1]C. Rappold *et al.,* (HypHI Collaboration) Phys. Rev. C 88 041001 (2013)

Theoretical models

- Cannot reproduce with the bound nnΛ Ref.) E. Hiyama et al., Phys. Rev. C 89, 061302 (2014).
 - A resonance state may be possible

Ref.) I.R. Afnan et al., Phys. Rev. C, 92 054608 (2015).

Existence of the $nn\Lambda$ is not established at all. Need more precise spectroscopic study $\rightarrow (e, e'K^+)$ reaction

Hall A & C Summer Meeting 2022

June 16 , 2022

<u>A hypernuclear experiment in the $(e, e'K^+)$ reaction</u>

An experiment in the $(e, e'K^+)$ reaction enables to

- Use the primary beam (small beam energy spread : $\Delta E_e/E_e \sim 10^{-4}$)
- Measure hyperons with $p(e, e'K^+)\Lambda/\Sigma^0$ reactions

To search for the $nn\Lambda$ with the high energy resolution and accuracy, we performed $nn\Lambda$ experiment in the ${}^{3}\text{H}(e, e'K^{+})nn\Lambda$ reaction at JLab Hall A.

June 16, 2022

4

Contents

- Physics motivation (nnA state problem)
- *nn*Λ experiment (E12-17-003)
- Study of the Λn Final state interaction

5

June 16, 2022

• Future Λ hypernuclear experiments

nnA search experiment (E12-17-003) at Hall A

The $nn\Lambda$ search experiment (E12-17-003) was performed at JLab Hall A (2018).

• Two high resolution spectrometers (HRSs) $(\Delta p/p \sim 2.0 \times 10^{-4})$

Tritium gas target (84.8 mg/cm²)

By measuring momenta of e' and K^+ with HRSs, missing mass of $nn\Lambda$ (M_X) is obtained by

$$M_X = \sqrt{(E_e + m_T - E_{e'} - E_K)^2 - (\overrightarrow{p_e} - \overrightarrow{p_{e'}} - \overrightarrow{p_K})^2}$$

June 16, 2022

Precision of $p(e, e'K^+)\Lambda, \Sigma^0$ missing masses

This experiment required high resolution and accuracy.

 \rightarrow We took calibration data for (z, θ, ϕ, p) parameters.

Hall A & C Summer Meeting 2022

June 16, 2022

³H(e, e'K⁺)X missing mass spectrum

Cross section of missing mass in the ${}^{3}H(e, e'K^{+})X$ reaction (after mass calibration)

Hall A & C Summer Meeting 2022

June 16, 2022

*1 : JLab Hall A/C standard Monte Carlo Simulation

Including fermi momentum, kaon decay,

³H(e, e'K⁺)X missing mass spectrum

Our group studies three physics from the ${}^{3}H(e, e'K^{+})X$ missing mass.

June 16, 2022

9

Contents

- Physics motivation (nnA state problem)
- *nn*Λ experiment (E12-17-003)
- Study of the Λn Final state interaction

June 16, 2022

10

• Future Λ hypernuclear experiments

Final State Interaction (FSI)

Final state interaction : Reaction between a recoil Λ and a nucleon within a target (ΛN scattering).

This effect (FSI) is known to make an enhancement ($-B_{\Lambda} > 0$ MeV) Ref.) Phys. Rev. C 76, 054004 (2007).

Hall A & C Summer Meeting 2022

June 16, 2022

Estimation of An final state interaction

FSI can be written with influence factor $I(k_{rel})$ as following

 $\left(\frac{d\sigma}{d\Omega}\right)_{\rm FSI} = \left|\frac{\psi(kr+\delta)}{\psi(kr)}\right|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o\ FSI} = I(k_{rel}) \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o\ FSI} = \frac{1}{|J_l(k_{rel})|^2} \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o\ FSI}$

In the ERA ($k \cot \delta = -1/a + 1/2r_ek^2$), the Jost function is written with scattering length (*a*) and effective range (r_e) as :

12

Hall A & C Summer Meeting 2022

June 16, 2022

Missing mass spectrum including An FSI by SIMC

Missing mass with Λn FSI is $\left(\frac{d\sigma}{d\Omega}\right)_{FSI} = I(k_{rel}) \left(\frac{d\sigma}{d\Omega}\right)_{w/o FSI}$ • $\left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o\ FSI}$: Given by SIMC (w/o FSI) • $I(k_{rel})$: Calculated by Jost function Red : w/FSI (NSC97f) nfluence factor (0.25¹S₀ + 0.75³S₁) w/. FSI Julich A Green : w/o FSI (SIMC) w/. FSI Julich B $I(p_{\Lambda n})$ w/. FSI NLO13(600) w/. FSI NLO13(650) Successfully reproduced w/. FSI NLO19(600) the enhancement w/. FSI NLO19(650) w/. FSI NSC97f Calculating $\vec{p}_{\Lambda n}$ and $I(\vec{p}_{\Lambda n})$ 3 H(e, e'K⁺)X each event (Simulation) 200 250 300 350 450 50 P_{An} [MeV/c] 150 400 20 30 50 0 10 40 60 -B_A [MeV]

Hall A & C Summer Meeting 2022

June 16, 2022

13

Missing mass spectra with Λn FSI

The structure $(-B_{\Lambda} \sim 0 \text{ MeV})$: Assuming resonance state of $nn\Lambda$ $(\Gamma, -B_{\Lambda}) = (4.7, 0.55) \text{ MeV}$ SIMC spectra including Λn FSI and $nn\Lambda$ were scaled by chi-square fitting $(0 \le -B_{\Lambda} \le 60 \text{ MeV})$

 $\chi^{2} = \sum_{i} \frac{\left(y_{\text{data}}^{i} - w_{FSI} \cdot y_{FSI}^{i} - w_{nn\Lambda} \cdot y_{nn\Lambda}^{i}\right)^{2}}{\sigma_{\text{data}}^{i}} \quad (w_{FSI}, w_{nn\Lambda} \text{ are scaling factors})$

Missing mass spectra with FSI :

- Succeeded in reproducing enhancement structure ($0 \le -B_{\Lambda} \le 60 \text{ MeV}$)
- Better agreement with the experimental data

Search for the best An potential parameters

 Λn FSI : calculated by Jost function with the (a, r) potential parameters

 \rightarrow Study of the (a, r)-dependence of χ^2 (Search for the best (a, r) parameters)

Using two parameters (\bar{a}, \bar{r}) : $\bar{a} \equiv a_s = a_t$, $\bar{r} \equiv r_s = r_t$ JulichA ¹S JulichA ³S Λn theoretical JulichB ¹S r [fm] 9 models $(a_t^{\Lambda p}, r_t^{\Lambda p})$ JulichB $\left(\frac{d\sigma}{d\Omega}\right)_{\rm FSI} = \left(\left|\frac{1}{J\,(k_{\rm rel})}\right|^2\right) \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o\,FSI}$ NSC97f Exp. Data [NSC97f NLO19(650) NLO19(650) Best Fit $\gamma^2 = 59.0$ 1σ (χ²=60.0) χ²=61.0 ²=62.0 Assuming $\bar{a} = -2.6$ fm $\chi^2_{\rm min}=59$ (Preliminary) $\bar{r} = 5.0^{+1.3}_{-1.2}$ (stat.) fm at (-2.6,5.0) fm $(a_s^{\Lambda p}, r_s^{\Lambda p})$ I am going to publish this study as soon! Exp. Data [1] a [fm]

[1] Eur. Phys. J. A 21, 313-321 (2004).

15

June 16, 2022

Contents

- Physics motivation (nnA state problem)
- *nn*Λ experiment (E12-17-003)
- Study of the Λn Final state interaction

June 16, 2022

16

• Future Λ hypernuclear experiments

Future Λ hypernuclear experiment

Three other experiments were approved

- An isospin dependence study of the ΛN interaction (E12-15-008)
- High accuracy measurement of nuclear masses of $^{3,4}_{\Lambda}$ H (E12-19-002)
- Studying Λ interactions in nuclear matter with the ²⁰⁸Pb($e, e'K^+$)²⁰⁸Tl (E12-20-013)

We are planning to perform them at Hall C at earliest occasion. \rightarrow Preparing for these experiments

June 16, 2022

The nnA experiment (E12-17-003) was performed in 2018 at JLab Hall A.

Two papers were published.

- The cross-section measurement for the ${}^{3}\text{H}(e, e'K^{+})nn\Lambda$ reaction Prog. of Theo. and Exp. Phys, 2022, 013D01 (2022).
- Spectroscopic study of a possible Λnn resonance and a pair of ΣNN states

Phys. Rev. C 105, L051001 (2022).

18

Study of the Λn FSI

• Assuming $\bar{a} = -2.6 \text{ fm}$, (Preliminary) $\bar{r} = 5.0^{+1.3}_{-1.2}$ (stat.) fm

Future Λ hypernuclear experiments

Three experiments (PAC) were accepted (E12-15-008, E12-19-002, E12-20-013). We are preparing for these experiment to be performed at Hall C.

Hall A & C Summer Meeting 2022

June 16 , 2022

Hall A & C Summer Meeting 2022

June 16 , 2022

19

Estimation of An relative momentum

Influence factor (I) is depending on Λn relative momentum $(\vec{k}_{\Lambda n} = \vec{p}_{\Lambda} - \vec{p}_{n1})$

 E_{nn}^* [MeV]

 $SP(k_p, E_{nn}^*)$

20

 $k_p \,[{\rm fm}^{-1}]$

A momentum : $\vec{p}_{\Lambda} = \vec{p}_{p} + (\vec{p}_{e} - \vec{p}'_{e}) - \vec{p}_{K}$ • \vec{p}_{e} , \vec{p}_{e} , and \vec{p}_{K} : observables (by CEBAF and HRSs).

• \vec{p}_p : Given by Fermi momentum distribution in the tritium.

Spectral function of ³H

Ref.) C. Ciofi degli Atti et al., Phys. Rev. C, 21 (1980).

June 16, 2022

Neutron momentum (\vec{p}_{n1}) : $\vec{p}_p + \vec{p}_{n1} + \vec{p}_{n2} = 0$

 $P_p(\vec{p}_p, E_p)$

 $P_{nn}(-\vec{p}_p, E_{nn}^*)$

$$\vec{p}_{n1(n2)} = -\frac{1}{2} \vec{p}_p + \vec{p}_{rel}$$
 $(\vec{p}_{rel} \equiv M_n \vec{p}_{n1} - M_n \vec{p}_{n2}/2M_{2n})$

Relative momentum (\vec{p}_{rel}) : Given from an excited energy of nn system (E_{nn}^*)

 $\rightarrow E_{nn}^*$ was given by spectral function of ${}^3\mathrm{H}$

<u>nnΛ state problem</u>

A $nn\Lambda$ is a Λ hypernucleus with no charge.

- Thought not to be bound
- Experimental data(GSI) → Bound state?? [1]

June 16, 2022

21

Analyzing process

 $\vec{p}(\theta_{tar}, \phi_{tar}, p_{tar})$ was reconstructed with backward matrix

By optimized matrix elements (a_{ij}) → Achievable high mass resolution and accuracy

Calibration data for $(\theta_{tar}, \phi_{tar}, z_{tar}, p_{tar})$

- *z_{tar}* : multi-carbon foils target
- θ_{tar}, ϕ_{tar} : sieve slit
- p_{tar} : hydrogen target (Λ and Σ^0 missing mass)

June 16, 2022

22

 $M_X = \sqrt{(E_e + m_T - E_{e'} - E_K)^2 - (\overrightarrow{p_e} - \overrightarrow{p_{e'}} - \overrightarrow{p_K})^2}$

Optimization

Optimization of parameters : (θ_{tar} , ϕ_{tar} , z_{tar} , p_{tar})

- *z_{tar}* : multi-carbon foils target
- θ_{tar}, ϕ_{tar} : sieve slit
- p_{tar} : hydrogen target (Λ and Σ^0 missing mass)

SS pattern after matrix tunir

/ cm

Achieved high mass resolution and accuracy

Hall A & C Summer Meeting 2022

Sieve slits

June 16, 2022

23

Missing mass spectra with An FSI

Any $\Lambda - QF$ spectra with Λn FSI were fitted with $\chi^{2} = \sum_{i}^{N_{\text{bin}}} \frac{\left(y_{\text{data}}^{i} - w_{FSI} \cdot y_{FSI}^{i} - w_{nn\Lambda} \cdot y_{nn\Lambda}^{i}\right)^{2}}{\sigma_{\text{data}}^{i}}$

: w_{FSI} , $w_{nn\Lambda}$ are scaling factors

Missing mass spectra with FSI :

- Succeeded in producing enhancement structure ($0 \le -B_{\Lambda} \le 60 \text{ MeV}$)
- Better agreement with experimental data

Hall A & C Summer Meeting 2022

June 16, 2022 24