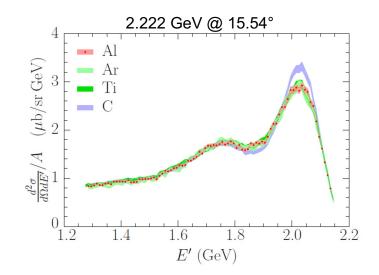

Proton spectral function from the Ti(*e,e'p*) cross sections

C. Mariani Center for Neutrino Physics, Virginia Tech for the E12-14-012 experiment

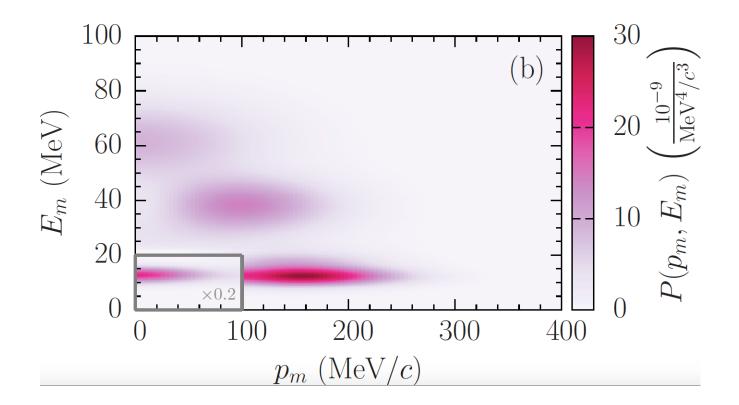
JLab Hall A Summer Collaboration Meeting, June 16–17, 2022

E12-14-012: (*e*,*e*') and (*e*,*e*'*p*) on Ar and Ti

Aim: Obtaining the experimental input indispensable to construct the argon spectral function, thus paving the way for a reliable estimate of the neutrino cross sections in DUNE. In addition, stimulating a number of theoretical developments, such as the description of final-state interactions. [Benhar *et al.*, arXiv:1406.4080]

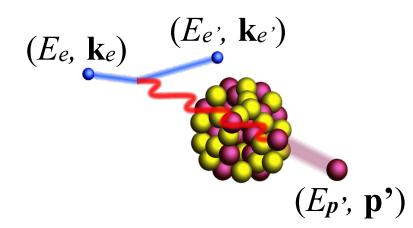

	E'_e	$ heta_e$	$ \mathbf{p}' $	$\theta_{p'}$	$ \mathbf{q} $	p_m	E_m
	(GeV)	(deg)	(MeV)	(deg)	(MeV)	(MeV)	(MeV)
kin1	1.777	21.5	915	-50.0	865	50	73
kin2	1.716	20.0	1030	-44.0	846	184	50
kin3	1.799	17.5	915	-47.0	741	174	50
kin4	1.799	15.5	915	-44.5	685	230	50
kin5	1.716	15.5	1030	-39.0	730	300	50

$E_e = 2.222 \text{ GeV}$


Exploratory analysis of the full dataset

Publications

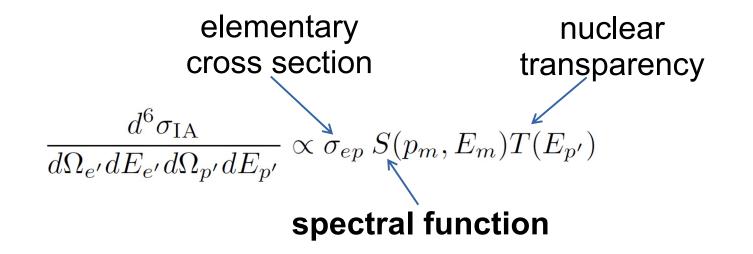
- Inclusive cross sections for C and Ti, [Dai et al., PRC 98, 014617 (2018)]
- Inclusive cross section for Ar,
 [Dai et al., PRC 99, 054608 (2019)]
- Inclusive cross section for AI-7075, Ar, C and Ti of all (*e,e'*) data [Murphy *et al.*, PRC 100, 054606 (2019)]
- Exclusive Ar & Ti cross sections for a single kinematics, p_m ~ 50–60 MeV, E_m ~ 50–70 MeV [Gu et al., PRC 103, 034604 (2021)]
- Exclusive Ar cross sections for all kinematics, pm ~ 50–350 MeV/c, Em ~ 10–70 MeV
 [Jiang et al., PRD 105, 112002 (2022)]


This analysis: extraction of the spectral function

Universal property of the nucleus, independent of the interaction.

Missing momentum \mathbf{p}_m and missing energy E_m

Without final-state interactions,


$$E_e + M - \underline{E_m} = E_e' + E_p'$$

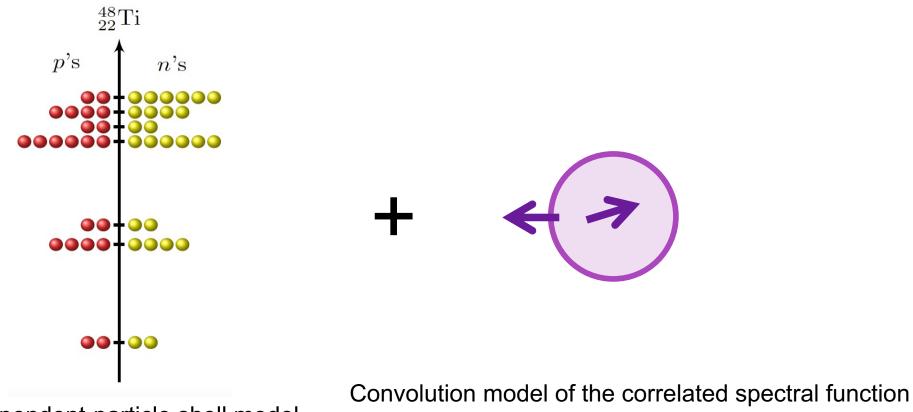
known

$$\mathbf{k}_e + \mathbf{p}_m = \mathbf{k}_e \mathbf{'} + \mathbf{p'}$$

 $E_m - E_{\text{thr}}$ is the excitation energy $p_m \equiv |\mathbf{p}_m|$ is the initial proton momentum

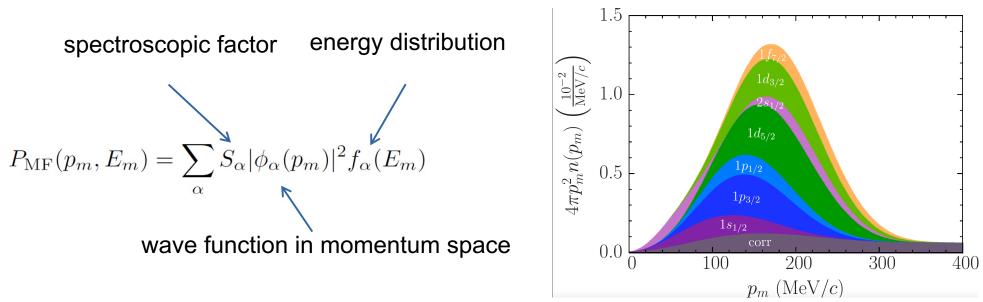
(e,e'p) cross section

Analysis procedure

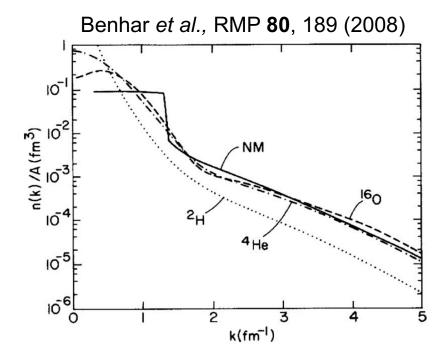

1) Extract of the (*e*,*e*'*p*) cross section

2) Using σ_{cc1} of de Forest and nuclear transparency, obtain the reduced cross sections as a function of (a) p_m and (b) E_m .

3) Find the parameters of the spectral function (*i.e.*, spectroscopic factors) from the fits to the reduced cross sections as a function of p_m .


4) Using the priors from Step 3), find the parameters of the spectral function (*i.e.*, spectroscopic factors, peak positions, distribution widths) from the fits to the reduced cross sections as a function of E_m . Correct for transparency.

Test spectral function: 80% mean-field + 20% *NN* correlations


Independent-particle shell model

Mean-field part of the spectral function

Relativistic MF calculations by C. Giusti

Correlated part of the spectral function

Ciofi degli Atti and Simula, PRC 53, 1689 (1996)

- Correlated nucleons form quasi-deuteron pairs, with the relative momentum distributed as in deuteron.
- NN pairs undergo CM motion (Gaussian distrib.)
- Excitation energy of the (A 1)-nucleons is their kinetic energy plus the *pn* knockout threshold

p_m fit results

Spectroscopic factor normalized by 2j+1, no transparency correction

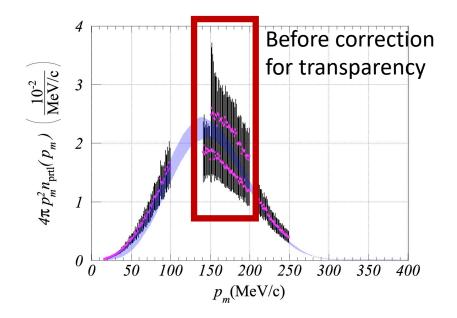
```
1f72 - Spectroscopic factor(2) = 0.78 + - 0.28
1d32 - Spectroscopic factor(4) = 2.60 + - 0.22
2s12 - Spectroscopic factor(2) = 1.94 + - 0.09
1d52 - Spectroscopic factor(6) = 2.34 + - 1.15
1p12 - Spectroscopic factor(2) = 2.73 + - 0.05
1p32 - Spectroscopic factor(4) = 5.46 + - 0.01
1s12 - Spectroscopic factor(2) = 2.10 + - 0.1-
Correlated part - Spectroscopic factor = 1.64 + - 0.17
```

```
Chi2/ndof = 1.42
Ndof = 683
```

In the p_m fit, only deeply bound states are sensitive to the correlated spectral function.

p_m fit results

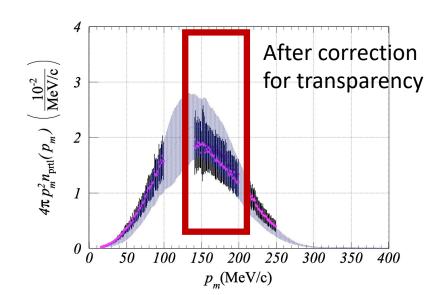
Spectroscopic factor normalized by 2j+1, with transparency correction


1f72 – Spectroscopic	factor(2)	=	0.78 +/- 1.25
1d32 – Spectroscopic	factor(4)	=	1.15 +/- 0.09
2s12 – Spectroscopic	factor(2)	=	1.96 +/- 0.09
1d52 – Spectroscopic	factor(6)	=	2.34 +/- 0.96
1p12 – Spectroscopic	factor(2)	=	2.73 +/- 0.23
1p32 – Spectroscopic	factor(4)	=	5.24 +/- 0.06
1s12 – Spectroscopic	factor(2)	=	2.08 +/- 0.10
Corr – Spectroscopic	factor	=	0.66 +/- 0.17

Sum = 19.18 + / - 1.60

```
Transparency corr. for kin2 = 0.75 + - 0.02
```

```
Chi2/ndof = 1.42, Ndof = 683
```

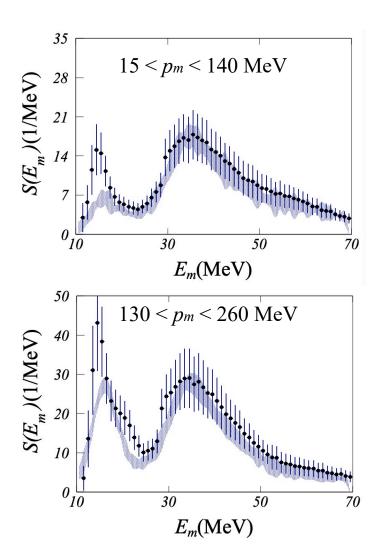

In the p_m fit, only deeply bound states are sensitive to the correlated spectral function.

Kinematic 2 has a proton momentum of 1030 MeV/C

Kinematic 3 has a proton momentum of 915 MeV/c

Kin2 data should be corrected for the change in nuclear transparency

E_m fit results


Orbital Strength and Errors

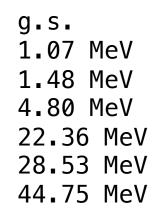
$$1f72$$
 (2) $1.43 +/- 0.28$ $1d32$ (4) $2.94 +/- 0.50$ $2s12$ (2) $1.89 +/- 0.11$ $1d52$ (6) $2.60 +/- 0.18$ $1p12$ (2) $2.68 +/- 0.06$ $1p32$ (4) $3.53 +/- 0.16$ $1s12$ (2) $2.20 +/- 0.13$

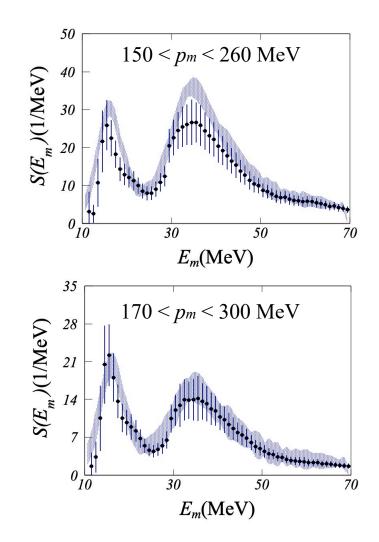
Corr 0.87+-0.08

Chi2/ndof = 1.25 Ndof = 125

Valence level – 9.11 MeV

E_m fit results


Orbital Mean and Errors (all in MeV)

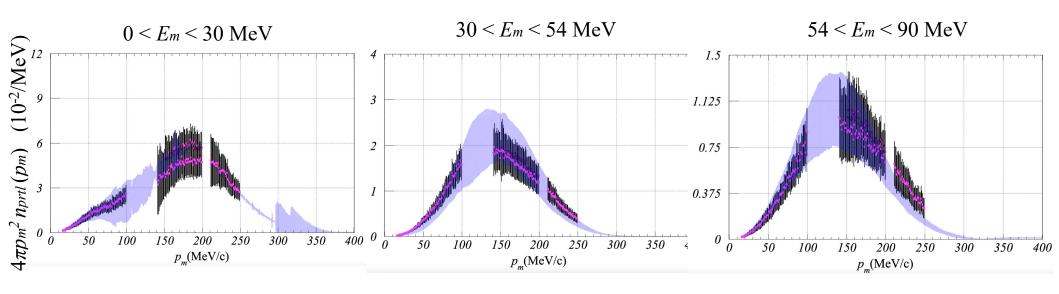

1f72 11.32 +/- 1.65 1d32 12.39 +/- 0.40 2s12 12.80 +/- 0.95 1d52 16.12 +/- 0.29 1p12 33.68 +/- 0.37 1p32 39.85 +/- 0.86 1s12 56.07 +/- 2.69

Corr 24.2 MeV

Chi2/ndof = 1.25 Ndof = 125

Valence level – 9.11 MeV,

E_m fit results - priors


Priors included in the $E_{\rm m}$ fit as penalty terms to the Chi^2

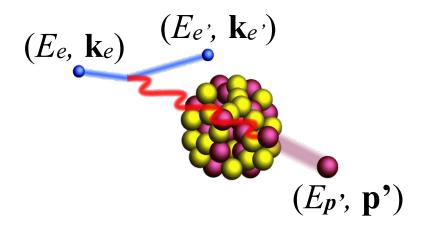
1f72 11.31 +/- 0.2 MeV 1d32 12.10 +/- 0.5 MeV 2s12 12.70 +/- 0.5 MeV 1d52 15.36 +/- 0.9 MeV

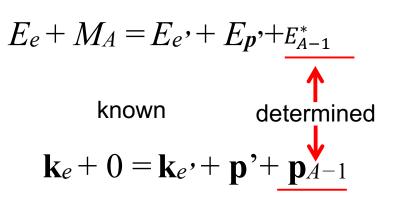
S0 1d32-1d52 3.7 +/- 2.0 MeV

S0 1p12-1p32 6.1 +/- 1.0 MeV

P_m fit results

pm (MeV)


Data from different kinematics are consistent within uncertainties.


Summary

- The first, exploratory analysis of the full dataset for Ti, results still preliminary.
- ✤ Reasonable parametrization of the spectral function of ⁴⁸Ti is found.
- Comparison with past results is underway.
- Separation of individual contributions requires improved analysis. Numerous theoretical developments are necessary.
- Need to work on using this measurement for computing the Ar-n spectral function
- Paper is in preparation
- Investigate the transparency measurement and correction

Backup

Missing momentum \mathbf{p}_m and missing energy E_m

In the absence of final state interactions

$$-\mathbf{p}_{A-1} = \mathbf{p}_m \text{ initial proton momentum; } p_m \equiv |\mathbf{p}_m|$$
$$E_{A-1}^* = \sqrt{(M_A - M + E_m)^2 + \mathbf{p}_m^2} \text{ , with excitation energy } E_m - E_{\text{thr}}$$